
– 1 –

Experiment 1:
Introduction to the Laboratory

This first experiment is one of the most important ones that you will be doing in ELEC2041
Microprocessors and Interfacing. It lays the foundation for everything that is to come,
showing you some important principles and guiding you through some of the practical
details of microcontroller-based systems.

Aims

This experiment aims to:

 introduce you to the DSLMU Microcontroller Board in the Digital Systems Laboratory,

 introduce the host environment in the Laboratory,

 show the fundamentals of editing, compiling and debugging a simple program on the
DSLMU Microcontroller Board,

 illustrate “best practice” principles when writing source code, and

 introduce simple ARM assembly language instructions.

Preparation

It is extremely important that you prepare for each laboratory experiment, so that you can
use your time (and your partner’s time) most effectively. This particular experiment does
not require much preparation; however, before coming into the Laboratory, you should:

 obtain one or two 3½˝ floppy disks on which to store your work,

 get your own copy of this Laboratory Manual, as well as the Companion CD-ROM,

 read through this experiment in detail, trying to understand what you will be doing, and

 quickly skim through An Introduction to Komodo, An Introduction to the GNU Assembler
and at least the first four pages of the DSLMU Microcontroller Board Hardware Reference
Manual. You can find these documents in the Appendices, as well as on your CD-ROM.

If you are keen (and you should be!), you could also:

 browse through this Laboratory Manual and the Companion CD-ROM,

 install the software on the CD-ROM onto your computer at home,

 type up or modify the necessary files in this experiment, to save time in class, and

 where possible, run through the experiment at home using the simulator.

Updates

Although this Laboratory Manual and the associated Companion CD-ROM should be all that
you need, you should regularly check this course’s Web site for any updates; you can find
this site at http://subjects.ee.unsw.edu.au/~elec2041/.

– 2 –

Signing in

As mentioned in your lectures, you will be working with a partner during these experiments.
When you arrive at the Laboratory for the first time, make sure you “sign in” with such a
partner.

When you sign in with your partner, you will be given an account name to use for this
course. Once you have this account name, move to any one of the 24 bench positions that
are vacant.

The PC should be showing the Linux login screen; if not, consult one of the Laboratory staff.
Log in using your new account name as the login name; you will be given the default pass-
word when you first sign in.

The first thing you should do is change the default password to something that both you
and your partner can easily remember. To do this, click on the Shell icon in the top left-
hand corner of the screen. A window will open, containing the command line prompt—in
Unix terminology, the shell. Type in the following command:

passwd

Follow the prompts and, voila!, your password is now changed. It is best to test this, so log
out by clicking the K icon (shown below), then selecting Logout:

By the way, this Laboratory Manual assumes for the most part that you have had some expe-
rience with Unix/Linux-like systems.

Equipment Handling Precautions

A few precautions are necessary in the Digital Systems Laboratory:

 The Laboratory is an environment where, unfortunately, it is quite easy for you to build
up a static electric charge. Electrostatic discharge can destroy electronic equipment,
including the circuits used in this Laboratory, without giving any sign of doing so!
Please make every effort to discharge yourself before handling the DSLMU Microcon-
troller Boards, and observe any handling precautions as advised by the staff.

Since you may be carrying a static charge without even realising it, you should always
discharge yourself. You can do this painlessly by touching a grounded conductor using
a coin, a key or another metallic object instead of your finger. You can use one of the
oscillator input connectors as a suitable grounded conductor.

 Short circuits may damage certain devices. Please remove any metal watch straps,
buckles, rings and so on before handling the boards. There are no dangerous voltages or
currents that will harm you here, but this is a good habit to form for times that you may
need to be more careful.

 Always turn the power off before connecting or disconnecting any I/O subsystems.

Examining the DSLMU Microcontroller Board

Now that you have your account name and password, log back in and take the time to
examine the environment in which you will be working. This consists of three main pieces
of equipment: the DSLMU Microcontroller Board,1 the oscilloscope and the Host PC, the
computer you have already been using. Figure 1 depicts the physical layout of the DSLMU
Microcontroller Board:

1 If you are wondering what on earth “DSLMU” stands for, it is an abbreviation of “Digital Systems
Laboratory and Manchester University”, the two entities responsible for the design of this board.

– 3 –

S
ec

o
nd

ar
y

S

er
ia

l P
o

rt

Pr
im

ar
y

S
er

ia
l P

o
rt

VA VB VC

Ex
p

an
si

on

C
o

nn
ec

to
r

1

Memory for
Virtex-E

(U9, U10,
U18, U19)

Flash
ROM
(U25)

Xilinx
V irtex-E

(U16)

S partan-
XL (U4)

Ethernet
(U7)

System Memory
SRAM Modules

(U11-U14, U21-U24)

Atmel
CPU
(U17)

JTAG

Boot

Power
Ethernet

Ex
p

an
si

on

C
o

nn
ec

to
r

2

SB

SB

SA

SA

VS

VS

P
o
w

er

LCD Module

Power 1

Power 2

P
o
w

er

Ground Link

P
o
w

er

0 1 2 3

7 4 5 6

LEDs

Spartan VS Terminals

Spartan SA Terminals

Spartan SB Terminals

O
n/

O
ff

S1 S2 S3

RESET

S witches Connector

S7 S8 S9 S10 S6 S5

LEDs Connector

LE
D

s

S4

Figure 1: The Physical Layout of the DSLMU Microcontroller Board

As you can see from this figure, the DSLMU Microcontroller Board actually consists of two
printed circuit boards connected to each other: the MU Board, which contains most of the
electronics, and the Expansion Board, containing most of the peripherals and connectors.
These boards were designed by staff at the University of Manchester, England, and the
School of Electrical Engineering, University of New South Wales, Australia.

The DSLMU Microcontroller Board is based on an ARM 32-bit Reduced Instruction Set Com-
puter (RISC) microcontroller and two Field Programmable Gate Arrays (FPGA). The particu-
lar microcontroller used on this board is the Atmel AT91R40008 device, one of dozens
available from different manufacturers world-wide, all of which use the ARM core.2 Each of
these microcontrollers is electrically different and has its own set of capabilities; however,
all are programmed using the same instruction set.

Why use ARM? As described elsewhere, this course attempt to teach you the principles of
microprocessors and interfacing. However, it is also highly advantageous, from your own
perspective, to use one of the most widely used modern computer architectures in the
embedded industry—and ARM represents the largest player in the world’s 32-bit embedded
market. Indeed, that mobile phone you are carrying (and which should be switched off in
the Laboratory!), that PDA you have in your pocket, that MP3 player in your back-pack—
more likely than not, all of these are running on some variant of the ARM 32-bit RISC
architecture.

2 For the curious, ARM itself does not manufacture its own microcontrollers (it runs what is known in
the industry as a “fab-less shop”). Instead, it sells the intellectual property (IP) rights to its design to
the different manufacturers, who do the hard work of manufacturing the physical silicon. ARM main-
tains a list of these manufacturers; see ARM’s Web site at http://www.arm.com/ if you are interested in
such details.

– 4 –

Apart from the ARM microcontroller, the DSLMU Microcontroller Board provides two Field
Programmable Gate Arrays (FPGAs): the Xilinx Virtex-E and the Xilinx Spartan-XL. These
FPGAs are designed to be reprogrammed to become any sort of peripheral that you might
want (within limits, of course). For example, you could program the Spartan-XL FPGA to be
a Real Time Clock (a device that keeps track of the actual date and time), or to be a latch-
and-debounce circuit for input switches. The Xilinx Virtex-E is even powerful enough to be
used as a custom coprocessor!

Figure 2 shows the system block diagram of the DSLMU Microcontroller Board. Study this
diagram carefully, as it will help you understand how the board works:

Microcontroller Bus

Peripheral Bus (Ports A and B)

MU Board Expansion Board

Flash ROM
(U25)

Serial Ports System Memory
SRAM Modules

(U11-U14,
U21-U24)

Optional
Ethernet

(U7)
Power
Supply

LEDs
(D8-D15)

Boot Select
Switch (U1)

LCD Module

Uncommitted
Switches

Uncommitted
LEDs SB SA VS VC VB VA

Optional
Memory

(U9, U10,
U18, U19)

Xilinx
Virtex-E
(U16)

Xilinx
Spartan-XL

(U4)

Expansion
Connector 2

Expansion
Connector 1

Atmel CPU
(U17)

Figure 2: System Block Diagram

You can find much more information on the DSLMU Microcontroller Board in the Hardware
Reference Manual. You can find this Manual on your CD-ROM in the board/doc directory, or
in one of the Appendices. Take the time to skim through that document!

Task: Take a closer look at the particular microcontroller used on the DSLMU Microcontrol-
ler Board: you will find as U17. Open to page 4 of the Atmel AT91R40008 Datasheet Sum-
mary and observe the block diagram for this processor (you can find this datasheet on your
CD-ROM in the board/doc directory, or in an Appendix). Can you take a guess at what
blocks were licensed from ARM and what blocks were added by Atmel itself? How simple or
complicated do you think those blocks from ARM are compared to the ones added by
Atmel?

Now, identify the following components on the two physical boards, observe them on the
system block diagram (where applicable) and try to trace the connections between them and
other major components:

 the main crystal oscillator, U3 which generates timing signals for the entire system,

 the static RAM components, U11–U14 and U21–U24, providing read/write memory, in
which your programs will be stored and run,

 the Flash ROM component, U25, providing read-only storage, and which contains the
programs necessary to communicate with the host PC,

 the Xilinx Spartan-XL FPGA, U4, containing up to 10,000 programmable systems gates,
allowing you to design custom hardware for the board,

 the Xilinx Virtex-E FPGA, U16, containing up to 412,000 programmable system gates,
allowing you to design a custom coprocessor for the board,

– 5 –

 the LCD module, which you can use to display messages,

 the 4-way DIP switch, which allows you to select the mode of operation for the board,

 the LEDs in the shape of “traffic lights”, the bar-graph LEDs and various push-buttons
and other switches, peripherals you will use in various experiments,

 the screw terminal connectors, to which you can attach your own peripherals,

 the On/Off power switch, which you will use whenever you need to attach peripherals to
the board, and

 the Reset button (in red!), which you may need to use if your program crashes.

Examining the Oscilloscope

You should already know how to use an oscilloscope from previous courses. For this rea-
son, all that you need to do for the moment is to take a quick look at the oscilloscope that is
part of your Laboratory environment. Take the time to identify the two main input channels
and the various controls associated with them. In particular, locate the scale control, which
is marked in volts per (vertical) division, and the time base control, marked in seconds per
(horizontal) division. You will be using these controls in later experiments.

Examining the Host Environment

Now turn your attention to the host PC to which the DSLMU Microcontroller Board is con-
nected. This host PC is simply a standard personal computer running the Linux operating
system and the KDE graphical environment; you will be using this environment to edit your
source code files, compile these files into executables, download these to the DSLMU Micro-
controller Board and debug and run them there.

You should see a fairly standard KDE desktop every time you log in. Take note of the desk-
top icons in the top left-hand and top right-hand corners:

Figure 3: Desktop Icons

The Shell icon, in the top left-hand corner, opens up a Unix shell (command line) window.
You have already used this icon in this experiment; you are expected to know basic Unix
commands from other programming courses.

– 6 –

The Editor icon starts the default text editor. In this laboratory you will be using the KDE
Advanced Text Editor kate.3 Take some time to familiarise yourself with this editor: click
on the icon, watch the editor window come up, create a new file, place some random text
into it, save the file (give it any name you like) and so on.

The two icons in the top right-hand corner are convenient short-cuts to the Companion CD-
ROM and to the ARM Architecture Reference Manual. You are encouraged to use these
resources during your Laboratory experiments—and you don’t even need to bring your own
CD-ROM in every time!

A Simple Program to Get Started

It’s time to get your hands dirty, so to speak, with some programming. Since everyone likes
to see something “real”, preferably with flashing lights, your first program on the DSLMU
Microcontroller Board will be to get the eight LEDs to flash on and off.

It is a good habit, and one that you should adopt, to create separate directories for each pro-
ject. This translates to creating a separate directory for each experiment in this course.

Task: Given the above, open a shell window and type:

mkdir ~/exp1
cd ~/exp1

You should now be in the exp1 subdirectory just beneath your own home directory (you can
verify this with the Unix pwd command4).

Now, copy all of the files you will need for this experiment from the Companion CD-ROM.
In the Laboratory, you can find a copy of the CD-ROM in ~elec2041/cdrom. You can copy
the files you need by typing:5

cp ~elec2041/cdrom/unsw/elec2041/labs-src/exp1/* .

Be careful to note the “.” at the end of the cp command! And don’t close the shell window
just yet as you will be using it extensively…

Program Specification

The first step in any program development is to come up with a specification: a description
of what you want the program to achieve. Or, in real life, what your customers want the
program to achieve. Remember the old English proverb, “an ounce of prevention is better
than a pound of cure”! Trying to save time by skimping on the specification only wastes
time later on during implementation.

In this case, the specification is simple: the program must flash the LEDs on and off. In
other words, the program must first turn the LEDs on, then turn them off, repeating this
process forever (or until stopped, whichever comes first).

If you consult the DSLMU Microcontroller Board Hardware Reference Manual, you will find
that the eight LEDs on the MU Board can be accessed at address 0x10000000.6 Writing a
byte to this address will turn the LEDs on or off, depending on the individual bits.

3 You can, of course, use any editor of your own choosing, such as GNU Emacs.
4 You should remember, from other courses, that the Unix man command gives you the manual page
for any command. So, for example, you could type “man pwd” for more information on the pwd
command.
5 If you are at home, you will not have a ~elec2041/cdrom directory, of course. You do have the actual
Companion CD-ROM, however. In this case, mount the CD-ROM in some directory (usually /mnt/
cdrom) and use that directory instead.
6 This manual uses the standard C notation for hexadecimal numbers. You should remember this
notation from other courses. You can always refresh your memory by reading Brian Kernighan and
Dennis Ritchie’s classic book The C Programming Language, Second Edition (ISBN 0-13-110362-8).

– 7 –

Task 1: LED Bit Patterns

Your first simple task is to work out the bit patterns (ie, the binary ones and zeros) that will
turn all of the eight LEDs on or off. Does a 1 bit turn the LED on or does it turn it off? You
may need to consult the Hardware Reference Manual.

What value, in binary, will turn the eight LEDs on? What value will turn them off? How did
you come up with these values? The answer “I read ahead and found it in the source code”
will not be valid!

Checkpoint 1: ... Signature:

Program Design

After specifying what the program will do, the usual next step is to come up with a pseudo-
code or flow-chart version. Computer programming is an art: you are meant to be creative.
Pseudo-code, flow-charts and the like can help your creativity by providing a high-level view
of what you are trying to achieve. As this experiment is only an introduction, most of the
hard work has been done for you. So, Figure 4 gives you the pseudo-code for the Flashing
LEDs program:

program main

const
 Value1 = XXX /* Value to turn LEDs on */
 Value2 = XXX /* Value to turn LEDs off */

 LED_port = 0x10000000 /* Address of the eight LEDs */

do {
 LED_port := Value1
 LED_port := Value2
} forever

Figure 4: Pseudo-code for the Flashing Lights Program

Replace the XXX’s with the values you determined previously, in Task 1.

Program Implementation

Now that you know what is required of the program and have figured out how the program
is going to do it (using the pseudo-code above), it is time to implement.

As mentioned previously, the DSLMU Microcontroller Board is based on the ARM 32-bit RISC
architecture. In other words, the microcontroller on the board is programmed using the
ARM instruction set.7 In this part of the experiment, you will be programming in assembly
language—which an assembler will convert into the binary ones and zeros needed by the
microcontroller.

Since this is your first ARM assembly language exercise, Figure 5 gives you the complete
program without further ado:

7 For those who are interested, the particular microcontroller on the DSLMU Microcontroller Board, the
Atmel AT91R40008, uses the ARM7TDMI core to implement Version 4T of the ARM instruction set.
All this might seem confusing, but you don’t need to worry about it. See the ARM Architecture Refer-
ence Manual, pages v–ix, in the reference directory of your CDROM, if you want more information.

– 8 –

; ***
; * *
; * Flash the LEDs on the DSLMU Microcontroller Board *
; * First Version *
; * *
; ***
;
; Author: John Zaitseff <J.Zaitseff@unsw.edu.au>
; Date: 7th March, 2003
; Version: 1.6
;
; This program, when run on the DSLMU Microcontroller Board, flashes the
; LEDs on and off. A high-level (pseudo-code) version of the program is:
;
; program main
;
; const
; Value1 = 0b11111111 /* Value to turn LEDs on */
; Value2 = 0b00000000 /* Value to turn LEDs off */
;
; address
; LED_port = 0x10000000 /* Address of the eight LEDs */
;
; do {
; LED_port := Value1
; LED_port := Value2
; } forever
;
; where Value1 is the value to turn ON all of the LEDs and Value2 is the
; value to turn OFF all of the LEDs.

; ---
; Constant values used in this program

 .equ LED_port, 0x10000000 ; Location of LED port

 .equ Value1, 0b11111111 ; Value to turn LEDs on
 .equ Value2, 0b00000000 ; Value to turn LEDs off

; ---
; Assembly-language preamble

 .text ; Executable code follows

_start: .global _start ; "_start" is required by the linker
 .global main ; "main" is our main program

 b main

; ---
; Start of the main program

main: ; Entry to the function "main"

 ; Although "main" is technically a function, this particular
 ; function has an infinite loop and so never returns to its caller.

 mov r4, #LED_port ; Load the address of the LED port
 ; (ie, the value of the constant
 ; LED_port) into register R4

main_loop: ; Start of the infinite loop

 ; Turn the LEDs on

 mov r5, #Value1 ; Load the value Value1 into R5
 strb r5, [r4] ; and store this value (a byte) to
 ; the address in R4 (the LED port)

(Continued on the next page…)

– 9 –

(Continued from the previous page…)
 ; Turn the LEDs off

 mov r5, #Value2 ; Load the value Value2 into R5
 strb r5, [r4] ; and store this value (a byte)

 b main_loop ; Branch back to main_loop, ie, run
 ; forever

; ---

 .end

Figure 5: Program flash-v1.s

Before you proceed any further, take the time to read through this program carefully and
see if you can figure out what is going on. The following points may be useful:

 Anything following a semicolon “;” is a comment that is ignored by the assembler,

 A name (a sequence of letters, digits, “_” and/or “.”) followed by a colon “:” is a label;
labels are used to refer to a particular point in the program from anywhere else,

 Anything starting with a full-stop and not followed by a colon, such as .equ and .text,
is an assembler directive; assembler directives, naturally enough, tell the assembler what
to do,

 Anything else, such as “strb r5, [r4]” is an assembly language statement, also called
an instruction.

 Almost all ARM assembly language instructions have the form “mnemonic parameters”.
Most of those statements having two parameters have the form “mnemonic destination,
source”. It is unfortunate, however, that some instructions—including strb (“store byte”)
in this program—have the reverse form “mnemonic source, [destination]”!

 Numbers of the form 0x10000000 are, of course, in hexadecimal.

 Numbers of the form 0b11001100 are in binary. Ordinary numbers are in decimal.

Programming Style

A few comments may be appropriate at this point about the style of writing assembly lan-
guage programs. Programmers tend to be an individualistic group of people, and nowhere
is this more evident than in how they choose to format their code. “Holy wars”8 have even
erupted over trivial things like the position of the brace character “{”!

Nevertheless, it is important for readability and consistency to choose an appropriate style
of writing programs and then stick to it! And whilst programmers that have decades’ worth
of experience will usually refuse to change their style, you are most likely still forming
yours…

For this reason, you are encouraged to adopt the following style rules, especially for this
course:

 Start each source code file with a heading,

 Include your name and e-mail address so that it is easy to see who is responsible for the
file,

 Display the date of last modification and a version number,9

 Have a description of what the program does, possibly with the pseudo-code version
included,

 Include appropriate comments that explain the “why” and not just the “how” of the pro-
gram throughout the source code, and

8 See the excellent Jargon File on the Web at http://www.catb.org/~esr/jargon/html/ for more informa-
tion on this and many other computer-related topics.
9 Unless, of course, you are using a version-control system, which maintains this information for you.

– 10 –

 Use a sensible layout for your code. This makes it easy to see the assembly language
statements, and makes any labels in your code easy to see.

You can use the program flash-v1.s in Figure 5, as an example of what to do (be aware, how-
ever, that some of the comments are not particularly appropriate once you understand the
ARM instruction set). Experiment 2 will cover the topic of programming style in more detail.

Please note that programs shown in later experiments have had many of their comments
removed to save paper. This does not mean you can do the same! You should always
consult the actual source-code files on your CD-ROM for the full listing.

Text Editing

Theory is all well and good, but what about the practical aspects of actually running the
program? To work!

Since this experiment is not about learning to type, you can save yourself a lot of time by
using an electronic copy of the source code. The appropriate file is already in your working
directory and is called flash-v1.s—the same name as used in Figure 5.

You now need to open this file for editing. There are two ways to do this: the “traditional”
shell method, and the graphical method; you can choose to use either one.

The first method is to issue the appropriate command line in the shell window. It has the
advantage of being quick and easy (no fiddling around with Open File dialog boxes and so
on). Simply type:

kate flash-v1.s &

The second method is to click on the Editor icon in the top left-hand corner of the screen.
Once the editor starts, select File » Open… from the menu, then navigate your directory tree
to exp1 in the Open File dialog box before (finally!) selecting the file flash-v1.s and clicking OK.

Irrespective of the method you choose to use, the first thing you need to do is add your
name and your partner’s name to the list of authors. Save the changes by selecting File »
Save from the menu. Don’t quit the editor: you have only just begun!

Assembling the Program

Development in the real world tends to be iterative, as illustrated in the following flow-chart:

(In less than
ideal situations!)

Specification

Imple mentation (editing)

Assembling / Compiling

Debugging

Release!

Figure 6: Typical Application Development Flow-chart

– 11 –

Now that you have done the Editing phase (you will be doing this by yourself from Experi-
ment 2 onwards, of course), you need to assemble the program. This is a two-step process.
The first step is to assemble the source code file into a relocatable object file, using the
assembler arm-elf-as. The second is to link that object file into a final executable, using
the linker arm-elf-ld.10

Use the mouse (or ALT+TAB) to select the shell window once again and type the following
commands. The first line corresponds to the first step; the second to the second step:

arm-elf-as --gdwarf2 -marm7tdmi -o flash-v1.o flash-v1.s
arm-elf-ld -o flash-v1.elf flash-v1.o

By the way, Linux (and Unix in general) tends to be the “strong, silent type”: if everything
went well, no messages will appear in the shell window. If either the assembler or the linker
complain, check the command lines carefully and make sure the file you are trying to
assemble is the correct one. If you are still experiencing troubles, call a demonstrator!

Why bother with a two-step process? As you will see from later experiments, you can com-
bine any number of relocatable object files to form an executable. “Relocatable” simply
means that the final location of code and data has not been fixed into place, ie, the code and
data can be linked to any particular addresses at a later stage.

If you now list your directory (using the ls command), you will find the following files,
amongst others:

flash-v1.s – the source code for the program,

flash-v1.o – the relocatable object file (the result of arm-elf-as), and

flash-v1.elf – the actual executable file (the result of arm-elf-ld).

The technical relationship between these files is called dependence. In particular, flash-v1.elf
depends on flash-v1.o; flash-v1.o in turn depends on flash-v1.s. This means that if flash-v1.s is
modified, all files that depend upon it (flash-v1.o and flash-v1.elf) need to be recreated (using the
same commands as above). Although this point is obvious, it is important to note it!

By the way, later on you will be using a tool called make to help you maintain dependence
relationships. Of course, there is nothing to stop you from using these tools now, if you are
comfortable in doing so!11

Running the Program

Now for the smoke test, as electrical engineers are wont to say! To run the program, you
need to:

1. connect to the DSLMU Microcontroller Board,

2. transfer (download) the program to the board, and

3. instruct the board to run the program.

You should still be in the Shell window. Type:

kmd &

The Komodo debugger should automatically connect to the DSLMU Microcontroller Board,
then put up the window shown in Figure 7:

10 The arm-elf- prefix simply shows that these tools produce output for the ARM architecture.
11 In this course, each part of an experiment is supplied with its own make-file, a “script” that tells
make what to do. The relevant make-file is usually the name of the source code file, but with a .make
extension instead of .s or .c. In this case, the make-file for flash-v1.s is flash-v1.make. Simply type
“make -f flash-v1.make” to recreate flash-v1.elf every time flash-v1.s is changed.

– 12 –

Figure 7: The Komodo Debugger

If it does not, check that the cable between the host PC and the board is firmly plugged in
and that you did not make any mistakes in typing the command line. Try again; if it still
fails, ask a demonstrator for help.

You now need to download the program to the board. Click on the second Browse button,
in the top right-hand corner (ie, the one associated with the Load button, not the Compile
button). Now, select flash-v1.elf from the Select Object File dialog box. Click OK, then click
Load in the main window. You should see the Load Progress indicator move to 100%.

Now that your executable has been downloaded to the DSLMU Microcontroller Board, you
need to prepare Komodo to run it. The first step in doing so is to press the Reset button (in
the top left-hand corner of the Komodo window).

Next, set the program counter to the start address of the program: this is the value of the
symbol _start. Use the mouse to click on the PC (program counter) register, on the left-
hand side of the window. Select the second edit box above the list of registers (just under-
neath and to the right of the word “Current”) by clicking the left mouse button in it. Delete
everything in this edit box (by using the BACKSPACE and arrow keys), then type in the label
_start and press ENTER. The list of registers will be updated to reflect the new value, as
shown in Figure 8:

Figure 8: The Registers

– 13 –

You are almost there… Find the edit field just above the top-most Address label, click your
left mouse button in it, type pc and press ENTER. Also click the Symbols checkbox in the
same area. You should see something like the screenshot in Figure 9:

Figure 9: The Memory Panel

Finally, click the Run button, in the top left-hand corner of the Komodo window.

If everything is successful, you should see the eight LEDs turn on. But they don’t flash on
and off! Why not?

Before continuing, you need to stop the program. To do this, press the Stop button, next to
Run.

Debugging Your Program

There are, essentially, two ways to find out why the program is not working as expected (no,
guessing does not count!): you could examine the software, and/or you could examine the
hardware. In general, you may need to do both.

A good debugger can help you solve software problems in three main ways: by controlling
how the program is run, by examining variables and by allowing you to change the contents
of those variables.

The first way the debugger helps you is by letting you control how the program is run. In
particular, you can run the program you are debugging up to a particular point (called a
breakpoint, as the program “breaks” at that point); you can proceed step-by-step (appropri-
ately enough called stepping); you can even jump to any place within your program (but very
carefully!).

The second way the debugger helps is by allowing you to examine the state of execution: the
program’s variables, the processor registers, the actual memory contents. In addition, you
can halt the program’s execution whenever one of these is read or changed—this is called
watching a variable.

The third way the debugger helps is an extension to the second: it allows you to actually
change the state of the program’s execution. In other words, it allows you to change the
contents of variables in the processor registers and in the actual memory.

These concepts might sound complicated, but in practice they are quite easy to understand.
As a first pass, you will step through the entire program, trying to understand what is going
on. However, you can appreciate the fact that this is simply not feasible for large programs!

Task: Before you start stepping through your program, you need to restart it. Press the
Reset button in the Komodo window, select the PC register as before, change the value from
00000000 to _start, then press ENTER.

Now you can run the program step-by-step. Press the Single-Step button once. This will
execute the instruction being pointed to by the green arrow and update the display. The
arrow will now point to the instruction that will be executed next.

– 14 –

Two important points to mention:

 Please ignore the blue highlight—it has a rather obscure meaning. It is the green arrow
that you should look at. It so happens that the blue highlight and the green arrow point
to the same place (for the moment), but that is not always the case.

 The line of code pointed to by the green arrow has not been executed yet: it is the one
that will be executed next. This is easy to forget! And this is one of the reasons why it is
helpful to keep the editor window (with the program’s source code) always open.

Task 2: Stepping Through the Program

Use the Single-Step button to go through your program step by step. What happens to the
LEDs as you do so? What registers change their values, and at what points in the program
does this happen? Be ready to explain what is happening to the Laboratory assessor.

Checkpoint 2: ... Signature:

Slowing It Down

You have probably figured out by now that the reason flash-v1.s does not seem to work is
that the LEDs simply turn on and off at an extremely fast rate—far too high for you to
observe directly. What to do?

The solution, of course, is to slow down the rate of flashing. The simplest way to do this is
by adding delay loops: bits of code that don’t really do anything, except waste time. You will
look at this topic in greater depth in Experiment 4; for now, use the Editor to open the file
flash-v2.s. Carefully examine this new program, reproduced in Figure 10 below:

; ***
; * *
; * Flash the LEDs on the DSLMU Microcontroller Board *
; * Second Version *
; * *
; ***

; Author: John Zaitseff <J.Zaitseff@unsw.edu.au>
; Date: 7th March, 2003
; Version: 1.6

; This program, when run on the DSLMU Microcontroller Board, flashes the
; LEDs on and off. A high-level (pseudo-code) version of the program is:

; program main

; const
; Value1 = 0b11111111 /* Value to turn LEDs on */
; Value2 = 0b00000000 /* Value to turn LEDs off */
; WaitVal = 10000 /* Number of loops to wait */

; address
; LED_port = 0x10000000 /* Address of the eight LEDs */

; do {
; LED_port := Value1
; delay(WaitVal)
; LED_port := Value2
; delay(WaitVal)
; } forever

(Continued on the next page…)

– 15 –

(Continued from the previous page…)
; function delay (integer DelayVal)

; while DelayVal > 0
; DelayVal := DelayVal - 1

; where Value1 is the value to turn ON all of the LEDs, Value2 is the
; value to turn OFF all of the LEDs and WaitVal is the number of loops
; to repeat whilst waiting.

; ---
; Constant values used in this program

 .equ LED_port, 0x10000000 ; Location of LED port
 .equ Value1, 0b11111111 ; Value to turn LEDs on
 .equ Value2, 0b00000000 ; Value to turn LEDs off
 .equ WaitVal, 10000 ; Number of loops to wait

; ---
; Assembly-language preamble

 .text ; Executable code follows

_start: .global _start ; "_start" is required by the linker
 .global main ; "main" is our main program

 b main

; ---
; Start of the main program

main: ; Entry to the function "main"

 ; Although "main" is technically a function, this particular
 ; function has an infinite loop and so never returns to its caller.

 ldr r4, =LED_port ; Load the address of the LED port
 ; (ie, the value of the constant
 ; LED_port) into register R4

main_loop: ; Start of the infinite loop

 ; Turn the LEDs on

 mov r5, #Value1 ; Load the value Value1 into R5
 strb r5, [r4] ; and store this value (a byte) to
 ; the address in R4 (the LED port)

 ; Wait for the specified period of time

 ldr r0, =WaitVal ; Pass the parameter, WaitVal, in R0
 bl delay ; Call the function "delay"

 ; Turn the LEDs off

 mov r5, #Value2 ; Load the value Value2 into R5
 strb r5, [r4] ; and store this value (a byte)

 ; Wait again for the specified period of time

 ldr r0, =WaitVal ; Load the parameter into R0
 bl delay ; Call the function

 b main_loop ; Branch back to main_loop, ie, run
 ; forever

; ---
; Function "delay": delay program execution by wasting time in a loop

delay:

 ; This function expects R0 to contain the number of loops for
 ; which to wait. It does not return any meaningful values. The
 ; value in R0 is destroyed. All other registers are preserved.

(Continued on the next page…)

– 16 –

(Continued from the previous page…)
delay_1:
 subs r0, r0, #1 ; Decrement the number of loops to go
 bne delay_1 ; and repeat if it is not yet zero

 mov pc,lr ; Return to the caller

; ---

 .end

Figure 10: Program flash-v2.s

You should study this program in detail, trying to understand just what is happening.
Hopefully the comments in the program will be sufficient for you to do so!

Task: Before you can proceed with running a new program, you need to finish off with the
old one. To do this, press the Stop button in Komodo, then select File » Quit Program (in
other words, select the File menu with the left mouse button, and, while holding the mouse
button down, select Quit Program). You will be returned to the Shell window.

Once you have examined flash-v2.s, you need to assemble and link it to create the executa-
ble flash-v2.elf. You can do this by typing in the following command lines at the shell
prompt:

arm-elf-as --gdwarf2 -marm7tdmi -o flash-v2.o flash-v2.s
arm-elf-ld -o flash-v2.elf flash-v2.o

You will find that typing in long command lines again and again will get very tedious! The
alternative is to use the make command. Learning how this command works is beyond the
scope of this experiment, but you can use it without knowing much about it!12 To use make
to recompile flash-v2.s, type:

make -f flash-v2.make

This is shorter than typing out the two arm-elf- command lines, but it is still a little long…
You can make it even shorter, but that is left “as an exercise for the reader”.13

Task 3: Multiple Steps

Assemble and link the program flash-v2.s. Use Komodo debugger to run your program.
Once you verify that the LEDs actually flash, go through your program step by step. What
do you discover about the feasibility of doing this? How many steps would you have to take
to step through one cycle of the program (ie, to turn the LEDs on, then turn them off)? Can
you figure out how to overcome this problem by using the Multi-Step button?

Challenge: The program flash-v2.s has a (very small and deliberate) problem with it. Can
you find it? Hint: you will not see this problem (“bug”) by merely running the program!
(The moral of this challenge is that testing and debugging, as essential as they are, do not
guarantee a correct program).

Be ready to explain what is happening to the Laboratory assessor.

Checkpoint 3: ... Signature:

12 If you plan to earn your living as a computer programmer or engineer, it is probably very much
worth your while to learn how to use make effectively. The GNU Make Reference Manual is not a bad
place to start reading; you can find this Manual in the gnutools/doc directory on your CD-ROM.
13 The make command looks for the file Makefile by default; specifying “-f make-file” on the com-
mand line (for some file make-file) overrides this. If you did have the file Makefile, all you would have
to type is “make”: just four letters! If you like, you can use mv to rename the file All.make in your
directory to Makefile. Then, every time you type “make”, every program in that directory will be made.

– 17 –

A Program in C

Most programmers in the real world do not use assembly language to write their programs.
Instead, they prefer to use high-level languages like C, C++ or Pascal. The reason for this is
that assembly language programs are too tedious to write and, more importantly, maintain.
And yet it is very important for you to know how software works at its most fundamental
level, at the level of assembly language. That is why you are studying this course.

Among other things, this course is designed to teach you how programs written in those
high-level languages are actually implemented when run on real hardware. Later experi-
ments will deal with this topic in greater detail; this first experiment will just give you a
foretaste of what is to come.

Given the above, the following figures show what a “real world” programmer might write if
asked to implement a program to flash the LEDs. Figure 11 shows the contents of flash.h,14

a file containing definitions. Figure 12 shows the actual program, flash.c:

/* Type definitions */

typedef unsigned char byte; /* 8-bit byte */

/* Constant declarations */

#define FALSE (0) /* C value for FALSE */
#define TRUE (! FALSE) /* C value for TRUE */

#define LED_port_addr (0x10000000) /* Address of LED port */
#define Value1 0xFF /* Value to turn LEDs on */
#define Value2 0x00 /* Value to turn LEDs off */
#define WaitVal 10000 /* Number of loops to wait */

/* Function prototypes */

int main (void);
void delay (int delayval);

Figure 11: Program Header flash.h

/**
* *
* Flash the LEDs on the DSLMU Microcontroller Board *
* *
**/

/* Author: John Zaitseff <J.Zaitseff@unsw.edu.au>
 Date: 6th March, 2003
 Version: 1.5

 This program, when run on the DSLMU Microcontroller Board, flashes the
 LEDs on and off. It does the same thing as the second version of the
 assembly language program.
*/

#include "flash.h" /* The compiler inserts everything in Figure 11 here */

/* ---
 Function: main - Main program entry point
 Parameters: (none) - No parameters are passed
 Returns: (nothing) - This function never returns

 This function performs the main work of the program, flashing the LEDs
 on and off.
*/

(Continued on the next page…)

14 Please note that the listing in Figure 11 has had most of its comments removed. This is so that you
can instantly see just what is necessary. When writing your own programs, you should follow the
example set by the file on your CD-ROM, not by what appears in this figure!

– 18 –

(Continued from the previous page…)
int main (void)
{
 byte *LED_port = (byte *) LED_port_addr; /* LED port */

 while (TRUE) { /* Do this forever */
 LED_port = Value1; / Turn the LEDs on */
 delay(WaitVal); /* and wait for WaitVal */

 LED_port = Value2; / Turn the LEDs off */
 delay(WaitVal); /* and again wait */
 }
 return 0; /* We don't return, but */
 /* keep the compiler happy */
}

/* ---
 Function: delay - Delay program execution by wasting time
 Parameters: delayval - Number of empty loops to repeat
 Returns: (nothing) - No value is returned

 This function delays the program by "spinning in an idle loop". In other
 words, it just repeats a "do nothing" statement "delayval" number of times.
*/

void delay (int delayval)
{
 int i;

 for (i = 0; i < delayval; i++)
 ; /* Do nothing */
}

Figure 12: Program flash.c

Take the time to compare this program with flash-v2.s. Both do the same job. Which do you
think is easier to understand?

You need to run a compiler to convert code written in a high-level language into something
that can be run on a real machine. In this case, you need a C compiler. In this Laboratory,
you will be using the GNU C Compiler, arm-elf-gcc. Just like the assembler arm-elf-as,
the C compiler requires a two-step process: the first step compiles the source code into a
relocatable object file, the second links that object file into a final executable. The following
commands correspond to these two steps; note that the option –O2 uses the upper-case
letter “O”, not the number zero:15

arm-elf-gcc -c -mcpu=arm7tdmi -O2 -g -Wall -o flash.o flash.c
arm-elf-ld -o flash.elf cstart.o flash.o

Typing such command lines is definitely error-prone and rather laborious! For this reason,
you should just use make:

make -f flash.make

Task 4: Running the C Program

Compile the program flash.c and run it on the DSLMU Microcontroller Board using the
Komodo debugger. Show your working program to the Laboratory assessor.

Checkpoint 4: ... Signature:

15 Some details have been glossed over here. In particular, the file cstart.o provides some “glue” that allows
the final executable to be run on the DSLMU Microcontroller Board. This file has already been assembled
for you; you can look at the original source code in cstart.s, if you are interested in such details.

– 19 –

Use the GNU C Compiler to convert the program from C to assembly language. The appro-
priate command line is:

arm-elf-gcc -S -fverbose-asm -O2 -o flash-ctoasm.s flash.c

Remember that the option –O2 uses the upper-case letter “O”, not the number zero!

Now, use the Editor to open the compiler-generated file, flash-ctoasm.s. Try to correlate this
code with the original C program in Figure 11 and Figure 12. In addition, compare the com-
piler-generated code with the hand-written code in flash-v2.s (Figure 10). What differences
do you note? Are there any similarities? Can you determine the purpose of the registers
being used in flash-ctoasm.s? Give a brief explanation of this file to the Laboratory assessor.

Caution: the GNU Assembler, arm-elf-as, allows you to use both “;” and “@” to
start a comment. These experiments use “;”, as that is what code written by ARM
programmers tends to use. The GNU Compiler, however, uses “@”. All you have to
do is remember to treat “@” the same way you treat “;”.

Checkpoint 5: ... Signature:

Saving Your Work

You have almost finished this experiment! The only thing left to do is to save your files to a
floppy disk, so that you can use them at home or the next time you come into the Labora-
tory. You can do this under Linux by using the mtools package. This package provides
commands that are very similar to those under MS-DOS.

Insert your 3½˝ floppy disk into the drive and type:

mdir a:

This lists everything in the root directory of the floppy disk. Hopefully, your floppy disk
will be blank or, at least, have enough room on it to store all of your files. If not, you can
always type “mformat a:” to format the floppy disk. Caution: this will delete everything
from the floppy!

Now, create a subdirectory in which you will store your work files:

mmd a:exp1

Finally, copy all of the files in your current directory to the exp1 directory on the floppy:16

mcopy * a:exp1

When you want to restore the files from the floppy disk, you use mcopy again, “in reverse”.
For example, to copy everything from the exp1 directory on the floppy disk to the current
directory, type:

mcopy a:exp1/* .

Please note the “.” at the end of this command. In addition, mcopy uses “/” instead of the
MS-DOS “\”. If you need more information on how mcopy works, please consult the on-line
documentation; you can access that documentation by typing “man mcopy”.

16 This command will copy everything in the current directory to the floppy disk. However, there is
usually no need to save the .o object files or the .elf executable files. You can use standard Unix
wildcards or specific names instead of “*”. For example, “mcopy *.s *.c *.h *.make a:exp1”
should copy the relevant files for this experiment.

	Experiment 1:�Introduction to the Laboratory
	Aims
	Preparation
	Updates
	Signing in
	Equipment Handling Precautions
	Examining the DSLMU Microcontroller Board
	Examining the Oscilloscope
	Examining the Host Environment
	A Simple Program to Get Started
	Program Specification
	Task 1: LED Bit Patterns
	Program Design
	Program Implementation
	Programming Style
	Text Editing
	Assembling the Program
	Running the Program
	Debugging Your Program
	Task 2: Stepping Through the Program
	Slowing It Down
	Task 3: Multiple Steps
	A Program in C
	Task 4: Running the C Program
	Saving Your Work

