
An Introduction to the GNU Debugger

The GNU Debugger, part of the GNU Compiler Tools software suite, is the source-
level debugger used in the Digital Systems Laboratory. This powerful debugger
allows you to run your programs under controlled conditions. Doing this lets you
see exactly what is going on in your program, helping you to remove any problems
(“bugs”) that might be present.

The GNU Debugger is extensively documented in the GNU Debugger Manual, which
can be found on your CD-ROM in the gnutools/doc directory. This Introduction is a
summary of that manual specifically for the Laboratory.

The examples directory and its subdirectories on your CD-ROM contain many exam-
ples of assembly language and C programs that you can use to build up your debug-
ging skills. And you are encouraged to do so, as part of your laboratory preparation!
Ideally, you should read this document in front of a computer with the GNU Debug-
ger, so that you can try out the various commands. Please see the end of this docu-
ment for details.

Invoking the Debugger

The GNU Debugger can be run in two different modes: with a graphical interface
called Insight, and with a traditional command-line interface. The graphical interface
makes basic debugging tasks much easier, while the command-line interface gives
you considerable power for more complicated tasks. You will most likely want to
use the graphical interface for most of your debugging, using the command line only
when necessary.

Starting the Graphical Interface

You can start the debugger in its graphical interface mode by entering the following
command line in the Unix shell:

arm-elf-insight filename.elf &

Naturally, replace filename.elf with whatever is appropriate for your executable
file. Notice the ampersand “&” at the end of the command line: this makes the
arm-elf-insight program execute as a shell background task.

The following Source window should appear:

Other windows may also appear; you may ignore them for now.

One of the first things you should do is open the debugger’s Console window: this
gives you the full GNU Debugger command-line interface, which you will need for
more advanced tasks. You can do this by selecting View » Console from the main
menu, or by pressing the button in the toolbar. In this document, “the main
menu” always means “the main menu in the Source window”; the “toolbar” is the
toolbar in the same window.

- 2 -

Before you can begin the actual task of debugging your ARM executable, you need to
download that executable to a hardware board or to a simulator. This is called con-
necting and downloading to the target.

To do this, first select File » Target Settings from the main menu. A Target Selec-
tion dialog box will appear, allowing you to choose your target.

If you have a real hardware board in front of you, select the appropriate target, baud
rate and port. Make sure that Set breakpoint at main, Set breakpoint at exit and Set
breakpoint at _start are all selected. Click OK to close the dialog box.

If you do not have a hardware board in front of you, or don’t need to use it, select
Simulator as the target. The simulator is a piece of software on your computer that
pretends to be a real hardware board—it simulates the ARM microcontroller and
some of the hardware that is present on the real board. Once again, make sure that
the three breakpoint choices are all selected, as shown below. Click OK to close the
dialog box.

Now you are almost ready to run the program. Select Run » Connect to Target from
the main menu to connect to the hardware or simulator, then Run » Download to
download the program to the board’s memory.

Finally, select Run » Run from the main menu to run the program. You can also
click on the button in the toolbar. You should see something like the following
(make sure that you select SRC+ASM mode, as shown):

You are finally ready to start debugging!

Starting the Command-Line Interface

You can start the command-line mode of the GNU Debugger by entering the follow-
ing Unix shell command line:

arm-elf-gdb filename.elf

- 3 -

You will obviously need to replace filename.elf with whatever is appropriate for
your ARM executable. After printing some introductory remarks, the debugger will
issue the prompt “(gdb)”.

As in the graphical interface mode, you need to connect to the target and download
your program to it. If you want to connect to real hardware, type:

set remotebaud baudrate
target targetname port
load

where targetname is the name of the target for your hardware board (eg, rdi),
baudrate is the appropriate baud rate (eg, 19200) and port is the appropriate port
name (eg, /dev/ttyS1).

If you want to use the built-in simulator, type:

target sim
load

You should set a few breakpoints, for your own convenience, before you start run-
ning the program (ignore any messages that might occur):

b _start
b main
b exit

Now you can start running the program until it hits the first breakpoint:

run

Getting Help

One of the first things you should learn about the GNU Debugger is how to get help
when you need it. The command to do this is called, appropriately enough, help.
You can type this at the command line by itself, or with optional arguments (parame-
ters). For example, help b gives you a brief explanation of the b command used
previously.

The GNU Debugger allows you to abbreviate commands; the most commonly used
commands can be shortened to a single letter. For example, you can reduce help to h.

The command-line interface has a number of short-cuts that will make your life a
little easier. Pressing the UP ARROW and DOWN ARROW keys will retrieve command
lines that you typed in previously. Pressing ENTER will usually repeat the last com-
mand you typed.1 Pressing the TAB key once or twice will complete a command or
list all possible completions. For example, typing in h TAB TAB will make the GNU
Debugger list all commands starting with “h”.

The Insight graphical interface comes with additional help: selecting Help » Help
Topics from the main menu gives you an explanation of each of the windows that
can be opened.

Quitting the Debugger

The command to terminate the debugger is quit, or q for short. In the graphical in-
terface, you can also select File » Exit from the main menu.

By the way, there is no need to quit the debugger just because you have made some
changes to your program. For example, imagine you have found an error in the
program being debugged. Simply modify the program source code in your editor

1 The GNU Debugger actually tries to implement a DWIM (Do What I Mean) interface, and this
usually works reasonably well… By the way, see http://www.catb.org/~esr/jargon/html/ for a
useful resource that explains acronyms like this one.

- 4 -

window and save it, then type make in the Unix shell.2 You now need to download
the new executable (select Run » Download from the main menu, or type load) and
restart the program (select Run » Run from the main menu, or type run).

Starting Your Program

You have already met the command to start running your program from the begin-
ning: run (it can be abbreviated to r). Essentially the only effect of this command is
to reset the program counter (register R15 on the ARM microcontroller, also called
PC) to the start of your program and to start executing it. In particular, it does not
reset the stack pointer register R13 (SP)!

The graphical interface equivalent of the run command is Run » Run from the main
menu. You can also press the button in the toolbar; place the mouse cursor over
a button (“hover” the mouse) to see what that button does.

Section 4.2 of the GNU Debugger Manual has considerably more information about
the run command; however, most of it does not apply to embedded systems debug-
ging, which is what you are interested in doing.

Stopping Your Program

The whole purpose of a debugger is to control the execution of your program. In
particular, a debugger allows you to stop your program at any point and then to pro-
ceed in a way most convenient to you. There are two main ways of stopping: the
“abnormal” or emergency way, and the normal way.

The abnormal or emergency way to stop your program is by sending it an interrupt;
this is especially useful if your program has “run away” from you! Under the graphi-
cal interface, simply press the button in the toolbar. In the command-line inter-
face,3 press the CTRL and C keys together (CTRL+C).

The normal way to stop a program is by setting breakpoints in it. A breakpoint, as
its name implies, breaks the program’s execution at that point. The GNU Debugger
has a wealth of commands for setting different types of breakpoints, as described in
Section 5.1 of the GNU Debugger Reference; however, you really only need to know
the basics.

The main command to remember is break (abbreviated to b). This command takes
an argument: where the breakpoint is to be set. Some examples are:

b dispatch
b 211
b copy.s:14
b *0x004A4E5A

The first example sets a breakpoint at the label or function name dispatch, the next
example sets one at line 211 in the current source code file (you should have the
source files opened in your text editor), the third at line 14 of the file copy.s and the
last at address 0x004A4E5A.

Setting a breakpoint under the graphical interface is even easier: simply click the left
mouse button on the “-” symbol of the line at which you wish to stop. You should
see a red square replace the “-” symbol.

2 This assumes that you are using Makefiles to manage your project. This is highly recom-
mended! If you are using the command-line interface mode, you can type make from within
the debugger itself.
3 This is one of the rare times that the Console window in the graphical interface does not
behave in the same way as the command-line interface. In other words, you do have to use
the Stop button, even if you are using a Console window.

- 5 -

Every breakpoint is given a number when it is set. You can delete a breakpoint by
using the delete command (which can be shortened to d) with its number. For
example, d 5 deletes breakpoint number 5. Under the graphical interface, you can
delete a breakpoint by clicking on it with the left mouse button.

You can see a list of breakpoints by using the info breakpoints command (i b for
short). This gives you information about the breakpoint number, whether it is
enabled or disabled, where that breakpoint is, any conditions associated with it and
how many times the program has already stopped at that point.

The phrase “any conditions associated with it” in the previous sentence implies some
of the power of the GNU Debugger. For example, if you only want to stop at the
label loop_start once register R3 is less than or equal to one (so that you skip the
first 4000-odd iterations of the loop, say), you can type:

b loop_start if ($r3 <= 1)

Notice that the condition is a full-blown C expression4 that can be as complicated as
you like. Note also that the GNU Debugger requires you to put “$” in front of all
register names—this is so that you can still have a variable of the same name in your
program. In other words, $r0 is register R0, r0 is a variable or label named r0.
Having variables or labels of the same name as registers is not recommended in
assembly language programs, but is quite all right in C.

The current version of the graphical interface does not allow you to set conditional
breakpoints using a mouse: you need to use the break command in the console win-
dow if you want to do this.

You might also want to know about the disable and enable commands; issue help
disable and help enable, or see Section 5.1.5 of the GNU Debugger Reference, for
more information.

Stepping Through Your Program

Once your program has stopped at a breakpoint, you can let it continue running
(until it reaches another breakpoint or the end of the program). You do this with the
continue command (c for short). In the graphical interface, select Control » Con-
tinue from the main menu or click on the button in the toolbar.

If you want to execute just the next line of source code, use the step (s) command.
The graphical interface equivalent is Control » Step from the main menu or the
toolbar button. If your program is written in C, be aware that the “next line of
source code” most likely corresponds to many assembly language instructions; using
step will execute all of them.

If you only want to execute a single assembly language instruction, use the stepi
(si) command. The equivalent in the graphical interface is Control » Step Asm Inst
from the main menu or the toolbar button. Be careful, however, if you are pro-
gramming in C: the compiler might rearrange your source code lines when optimis-
ing, and this leads to rather unusual behaviour when using the stepi command!5

If you want to step more than one line or instruction in one go, simply specify that
number as a parameter to the step or stepi command. For example, s 10 will step
through ten lines of your code (unless a breakpoint causes it to stop earlier). There
is no equivalent in the graphical interface.

Another useful command is until (u), which executes your program until it reaches
a specified location. You can specify that location as a parameter in the same way

4 In other words, make sure you use “==” for “equals to”, not the “=” variable assignment
symbol!
5 See the file optimise.c in the examples/intro directory on your CD-ROM for an example of this
in action.

- 6 -

that you do for the break command. In the graphical interface, using the right
mouse button above a line number will display a context menu; simply choose the
Continue to Here option.

There is one other type of “stepping” command that you should know about: the
next command (or, in the graphical interface, Control » Next from the main menu or
the toolbar button). This command is similar to step, except that it treats func-
tion calls as a single line. In other words, step will jump into functions, while next
will jump over functions. This distinction is a little subtle and can cause no end of
grief if you get it wrong! The best way to remember it is by practising using both.

As with the step command, the next command (or n for short) has an assembly lan-
guage statement equivalent: nexti (ni) executes a single instruction, but treats func-
tion calls (the bl instruction) as a single instruction. It also has some rather unusual
behaviour when used with backward branches, so be warned… A good rule of
thumb is to always use stepi unless there is a bl instruction that you do not wish to
trace through.

Examining the Registers

A debugger would be pretty useless if all you could do was stop and start your pro-
gram. Its power lies in the fact that you can see a program’s state while it is
stopped: in other words, you can actually see the program’s registers and variables.

Under the graphical interface, select View » Registers from the main menu (or the
 toolbar button) to examine the ARM processor’s registers. This will bring up a

window similar to the following:

Remember that, on the ARM microcontroller, register R15 is also known as PC, the
Program Counter; register R14 is used as LR, the Link Register; and register R13 is
almost always used as SP, the Stack Pointer.6

If you right-click on any register, you can change the way that that register is dis-
played. For example, you can choose to display the CPSR (Current Program Status
Register) in binary, making it easier to interpret its contents. By the way, you will
probably want to keep the ARM Architecture Reference Manual open to page A2-9
(page 41 of the PDF document) while interpreting this register; this document can be
found on your CD-ROM in the reference directory.

6 If you are very keen, you could read the ARM–Thumb Procedure Call Standard, which speci-
fies how the ARM registers should be used in a program. This document can be found on
your CD-ROM in the reference directory. The GNU Debugger supports this standard; you can
change the way registers are displayed by changing the setting of Disassembly Flavour in the
Preferences » Source dialog box. The default setting is Raw.

- 7 -

The equivalent command under the command-line interface is info registers (or
i r for short), which displays all registers in hexadecimal and decimal. You can also
use the print command, which is described later.

Examining Memory

The GNU Debugger gives you considerable flexibility in displaying the contents of
memory. As usual, the graphical interface gives you ease of use with some restric-
tions; you will probably find yourself resorting to the command line once you realise
the power available to you.

Using the Graphical Interface

Under the graphical interface, select View » Memory from the main menu (or the
toolbar button) to display a section of your program’s memory. You should see a
window similar to the following:

Simply modify the Address value to display that address; you can use ordinary
numerical addresses (most likely expressed in hexadecimal, such as 0x8000), register
names with a leading “$” (such as $r13), or labels with a leading “&” (such as &src).7

You can change the way the Memory window displays its contents: select Addresses »
Preferences to do so. Opening a new Memory window is somewhat tricky: select any
memory location with the left mouse button (that cell will then be coloured grey),
then use the right mouse button to select Open New Window at n (for some address
n).

By default, the GNU Debugger automatically updates the memory display after each
step in your program’s execution. However, this can be very slow, so you should
close any unnecessary Memory windows, or else disable the Auto-update feature
(Addresses » Auto Update in the Memory window) until you need it.

Using the Command-line Interface

There are two main commands that display the contents of memory: x and print.
These two commands are very powerful and only basic examples are given in this
document; you should read Chapter 8 of the GNU Debugger Reference if you want a
more in-depth treatment.

The x command examines an area of memory at a particular address and displays it
in a particular format. This command has the following form:

x/nfu address

The first three parameters, n, f and u, are all optional (if you omit all of them, you
do not need to specify the “/”, either). These parameters specify the repeat count n,
the format f and the unit size u.

7 In actual fact, you can use any expression that is valid for the x command, described later;
this gives you vast capabilities, most of which you will never exploit.

- 8 -

The most useful formats are x for hexadecimal, d for signed decimal, u for unsigned
decimal, t for binary (mnemonic: t for “two”) and i for an ARM instruction. The
most useful unit sizes are b for bytes, h for half-words (16-bit quantities) and w for
words (32-bit quantities). The parameter address has the same format as that used
in the Memory window in the graphical interface. All this sounds very complicated,
but some examples should help:

x/4ub 0x08 Display four bytes as unsigned integers, starting from
address 0x08. Pressing ENTER on an empty line after
this command will display the next 4 bytes.8

x/16xw $r13 Display 16 hexadecimal words (32-bit quantities)
starting from the address contained in register R13; in
other words, display the top 16 words on the processor
stack (since register R13 is the Stack Pointer register
SP).

x/10i &_start Display 10 ARM instructions starting from the label
_start. This is also known as disassembling your
program.

The other major command to display memory is print (or p for short). This com-
mand operates at a much higher level than the x command: it understands things
like full-blown C expressions, the types of variables and can even call functions in
your program. It is also the command used to change the contents of variables and
registers.

One major drawback of using the print command is that at times it requires a good
understanding of C pointers. Pointers are a notoriously difficult subject for the
beginner—an understanding of the difference between a variable, the address of that
variable and a pointer to that variable does not come easily!

Examples are probably the best way to illustrate some of the power of the print
command. Some of these examples use the files that can be found on your CD-ROM
in the examples/intro directory.9 And do remember that help print (or h p for
short) gives you a brief summary:

p 102 * (22 + 23) + 0x1234 – 9208
A simple calculator!

p (char) 0x4A Print the hexadecimal number 0x4A as the character
“J”. This is an example of a C type-cast, in this case to
char.

p/x &_start Print the address of the _start label, in hexadecimal.

p/t $cpsr Print the value of the ARM processor register CPSR, in
binary.

p/d (int) *0x10 Print the 32-bit integer (ie, a C type of int) stored at
address 0x10 (since *0x10 essentially tells the debug-
ger to “treat 0x10 as an address and look at what is
stored there”).

The next four examples use the program wordcopy.elf; note that the src array is
defined in the .data section, not in the .text section:

p/x &src Print the address of the src array as a hexadecimal
number.

p src Print the contents of the word stored at src. The value
“1” is printed.

8 This is where the GNU Debugger’s DWIM (Do What I Mean) interface comes into play… Try it
and see!
9 You would need to start the debugger on the appropriate file, connect to the simulator,
download the program and run it to the _start label, to see what the examples do.

- 9 -

p (int) src The same as the above, except that a C-style type-cast
to int is used.

p (int[10]) src Treat src as a pointer to an array of 10 ints, and print
out that array. This is another example of a type-cast.

The next seven examples use the program strcopy-c.elf. You need to run the pro-
gram at least to line 31 (the first printf statement) to get correct results:10

p srcstr Print the string pointed to by the srcstr variable.

p dststr Print the array of characters contained in the dststr
variable.

p dststr[2] Print the character at index 2 in the dststr array (ie,
the character “c”). Remember that arrays in C start at
index 0.

p (int *) srcstr Treat srcstr as a pointer to int (a C type-cast) and
print out its value (ie, the value stored in the variable
srcstr, which is an address).

p/x *((int *) srcstr)
Print the value pointed to by srcstr (when it is treated
as a pointer to int), in hexadecimal. You should see
the value “0x73726946” (the first four bytes of what
srcstr points to).

p/x (int *) (*((int *) srcstr) - 1936877878)
Print that value subtracted by 1936877878, and treat
the result as a pointer to int. You should see the
value “0x10”.

p/x (int) *((int *) (*((int *) srcstr) - 1936877878))
Finally, print the 32-bit integer that is stored at that
address (ie, the address 0x10). All this is a rather eso-
teric way of printing the hexadecimal representation of
the instruction at address 0x10!

The last four examples use the program jumptbl.elf:

p dispatch(1, 218, 34)
Call the dispatch function with three parameters and
print the result. This can be done even if you are in the
middle of debugging that function!11

p dispatch(&f_mul, 1234, 4321)
Call the same function with different parameters. Note
that &f_mul is used instead of f_mul: this is due to the
fact that labels assigned via the .set, .equ or “=”
assembler directives are treated as addresses, not
integers.

p/t do_add(-1, 26, 16)
Print the result of the function call to do_add in binary.
Can you figure out why the first parameter is –1? Hint:
the first parameter is always passed in register R0.

p do_add(-1, $r0, $r0)
Call the function do_add with the current value of the
register R0 and print the result. Note that, even though
that function returns the result in R0, your real R0 (ie,

10 These examples rely on the fact that the GNU Debugger treats srcstr and dststr as point-
ers to characters (ie, as strings). The GNU C Compiler inserts appropriate directives into the
output file to make sure that the GNU Debugger does this.
11 The function must conform to the ARM-Thumb Procedure Call Standard for this to work. A
simple summary of that Standard is that R0–R3 contain the parameters on entry, R0 must
contain the result on exit, and all other registers (R4–R14) must remain unchanged.

- 10 -

the register R0 in the program being debugged) is not
modified. Issue p $r0 to check this, if you like.

The best way to become proficient in using the x and print commands is by con-
stant practice! And do remember the help x and help print commands…

Modifying the Registers

The GNU Debugger allows you not only to examine registers and memory, but to
modify them as well. You do need to be careful, however: it is often very easy to
crash your own programs when they are presented with unexpected values!

In the graphical interface, you change a register’s value by double-clicking on that
register in the Register window. An edit cursor will appear; simply enter the new
value (using BACKSPACE to delete the old one) and press ENTER.

The command-line interface uses the print (p) command to modify the processor’s
registers. You simply specify the register name (with a leading “$”, of course), the C
assignment operator “=” and the new value.

Some examples:

p $r0 = 0x4A4E5A00
Set register R0 to 0x4A4E5A00.

p $r3 = $r3 – 5 Set register R3 to its current value less 5.

p $cpsr = ($cpsr & 0xFF) | (0xE << 28)
Set the N, Z and C flags, and reset the V flag, in the
Current Processor Status Register. See page A2-9 of
the ARM Architecture Reference Manual (page 41 of the
PDF document) for more information about CPSR.

Modifying Memory

Modifying the contents of memory is as easy as modifying the processor’s registers.
Under the graphical interface, find the appropriate address in the Memory window,
then double-click on the value you wish to modify. Simply change the value to what-
ever you want (using the BACKSPACE key as necessary) and press ENTER. Voila!

Under the command-line interface, you use the print command with the C assign-
ment operator “=”. Some examples (using the program wordcopy.elf):

p *((char *) 0x100)
Print the character (ie, a C type of char) stored at
address 0x100. You should always print the current
value before making modifications, just to check that
everything is OK!

p *((char *) 0x100) = 'J'
Store the character “J” at address 0x100.

p *(((int *) &dst) + 2)
Print element number 2 of the array dst. Unfortu-
nately, you cannot specify p dst[2] (as you would if
you were debugging a program written in C) as your
program does not contain sufficient type information.12

12 If you are keen enough, you can add the necessary debugging statements to your assembly
language program. Write the equivalent program in C, then use arm-elf-gcc -g -S to com-
pile it to assembly language code to see how the C compiler does it.

- 11 -

p *((int *) ((int *) &dst) + 2) = 7
Set element number 2 of the array dst to 7.

Chapter 11 of the GNU Debugger Reference has more information about modifying
your program’s state of execution, if you are interested. Not all of it, however, is
relevant to debugging programs on embedded systems.

Example Files

As already mentioned, the examples directory and its subdirectories on your CD-
ROM contain many examples of assembly language and C programs. You can use
these example files to practise the debugging commands discussed in this docu-
ment. And you are encouraged to do so, as “practice makes perfect”!

In particular, the examples/intro directory contains the following example files
(amongst others); run the debugger on each (as explained in the section Invoking the
Debugger) and follow the suggestions given:

pseudo.elf Compare the source code (in pseudo.s) and the disas-
sembled code in each of the subroutines using the
graphical interface (with the Source window set to
SRC+ASM instead of just SOURCE). You can use com-
mands like x/16i &_start under the command-line
interface, if you wish.

subr.elf Try stepping through this program using both the
stepi and nexti commands (or the and toolbar
buttons in the graphical interface). Note how nexti
executes the whole of a function call (the bl instruc-
tion) as if it were a single step.

optimise.elf Try stepping through this program using the tool-
bar button under the graphical interface. Note how the
C compiler rearranged the instructions and how the
“current address” highlight jumps around from place
to place.

jumptbl.elf Try using the print command examples, as suggested
in this document. Stepping through this program will
also help you understand jump tables.

wordcopy.elf Again, try the various print command examples. Try
modifying the contents of the src array and rerunning
the program.

strcopy-c.elf Tracing through a compiled C program can be an inter-
esting experience! Hint: if you do not want to wade
through hundreds of lines of start-up code, use the c
(continue) command to run without tracing until the
program reaches main. You will also want to use the
next or nexti commands to avoid tracing calls to
printf or puts.13 Notice how the GNU Debugger han-
dles multiple source code files when you trace into the
strcopy function.

13 Can you figure out why the GNU C compiler replaced some printf function calls with calls
to puts? It’s all in the name of optimisation…

- 12 -

Summary

The GNU Debugger is a powerful source-level debugger, and learning how to use it
can be quite complicated. You can use the following table as a “quick reference” to
the most useful commands:

h Give you help with commands.

q Quit the debugger.

r Run your program from the beginning.

b location Set a breakpoint at location, which can be a label, a
line number in the source code or *address (eg,
*0x8000).

i b Show information about breakpoints in your program.

d num Delete breakpoint num.

en num Enable breakpoint num.

dis num Disable breakpoint num.

c Continue running your program until it reaches a
breakpoint or the end

u location Run until the program reaches location (location
has the same syntax as the b command).

s Step through the next source line of code.

n Step through to the next line, treating function calls as
if they were a single line.

si Step through the next assembly language instruction.

ni As with si, but do not trace through functions or
backward jumps.

i r Display all ARM processor registers.

x/nfu address Examine memory at address. The most useful formats
f are x for hexadecimal, d for signed decimal, u for
unsigned decimal, t for binary and i for ARM instruc-
tions. The most useful unit sizes u are b for bytes, h
for half-words and w for words. Examples of address:
0x1234, $r0, &dst.

p expression Print the value of expression (which can be any com-
plicated C expression that you like).

p/f expression Print the value of expression using format f (see the
x command for a list of these).

Happy debugging!

	An Introduction to the GNU Debugger
	Invoking the Debugger
	Starting the Graphical Interface
	Starting the Command-Line Interface

	Getting Help
	Quitting the Debugger
	Starting Your Program
	Stopping Your Program
	Stepping Through Your Program
	Examining the Registers
	Examining Memory
	Using the Graphical Interface
	Using the Command-line Interface

	Modifying the Registers
	Modifying Memory
	Example Files
	Summary

