Disabling Interrupts at Processor Level

Background

The AT91 is based on the ARM7TDMIO microcontroller core.

This microcontroller core implements two physically independent sources of interrupt:
* FIQ - Fast Interrupt

e IRQ - Normal Interrupt

Both of these interrupts can be enabled/disabled at core level, by clearing/setting the
corresponding bit in the CPSR (Current Processor Status Register):
 FIQ-hit6

(clear = enabled, set = disabled)
* IRQ-hit7

(clear = enabled, set = disabled)
On the AT91, all interrupts are managed by the Advanced Interrupt Controller (AIC)
which asserts the internal IRQ, or FIQ, according to the interrupt source.

When the microcontroller core detects an IRQ or FIQ, and if the corresponding bit in
CPSR is cleared, it ends the instruction currently in progress, then fetches the corre-
sponding interrupt vector at address 0x0018 (IRQ) or 0x001C (FIQ).

AIMEL

AT91
ARM Thumb ®
Microcontrollers

Application Note

Rev. 1156A-08/98



AIMEL

Issue

When the application must not be interrupted, interrupts must be disabled at core level. This can be done using the follow-
ing code:

mrs ro, CPSR
orr rO, r0, #0x80 (or 0x40 for FIQ)
msr CPSR, r0

While the processor is executing the 'msr CPSR, r0' instruction, the active interrupts are disabled only on the next clock
cycle. If an IRQ or FIQ interrupt occurs during the execution of this instruction the bit IRQ or FIQ is set both in the CPSR
and in the SPSR (Saved Program Status Register) and the processor enters the interrupt handler routine.

The application developer must take care not to modify the IRQ or FIQ bit in the SPSR before exiting from the interrupt ser-
vice routine. If the interrupt handler does something like:

mrs r0, SPSR
bic r0, r0, #0x80 (or 0x40 for FIQ)
msr SPSR, r0

The IRQ or FIQ interrupt is re-enabled at the exit and the processor resumes execution after the 'msr CPSR, r0' instruction.
The interrupt is enabled while the application routine assumes that it is not.

Workarounds

There are 3 different ways to avoid the situation described above.

1. The firstis to always take care, during the interrupt routine, to restore the | and F bits in the register SPSR before
exiting.
Advantage: additional code is not necessary.
Inconvenience: the interrupt treatments must strictly follow this rule, which is not fully secure.

2. The second is to disable the interrupt with the following sequence:

DisIRQ
Idr r1,#0x80
b DislInt
DisFIQ
Idr rl,#0x40
DisInt
mrs r0,CPSR
orr ro,ro,rl
msr CPSR,r0
mrs r0,CPSR
ands r0,r0,r1
beq DisInt

Advantage: more secure and no time needed during the interrupt routine.
Inconvenience: more time is needed to disable interrupt at the task level.

2 AT91 ARM Thumb m—ssss—s———————



EEsssssssssssss———————————sssssssssssssnn A\ 191 ARM Thumb

3. The third is to check the state of the core at the beginning of the interrupt, and to exit if it is disabled.
The sequence to manage the IRQ is:

ManagelRQ
sub Ir, Ir, #4 ; Adjust LRirq
stmfd spl, {Ir} ; save LRirq
mrs rl4, SPSR ; Abort if IRQ disabled
ands rl4, r14, #0x80 ; (LBIT=1)
[dmnefd sp!, {pc*
Insert here the IRQ management
ldmfd sp!, {pc}*
The sequence to manage the FIQ is :
ManageFIQ
sub Ir, Ir, #4 ; Adjust LRfig
stmfd sp!, {Ir} ; save LRfig
mrs rl4, SPSR ; Abort if FIQ disabled
ands r14, ri4, #0x40 ; (F_BIT=1)
[dmnefd sp!, {pc*
Insert here the FIQ management
ldmfd sp!, {pc}*

Advantage: fully secure if each interrupt treatment includes this sequence.
Inconvenience: three fetch cycles are needed to manage the interrupt.

AlMEL 3



