
The DSLMU Microcontroller Board
Hardware Reference Manual

The DSLMU Microcontroller Board is based on an ARM 32-bit Reduced Instruction Set Com-
puter (RISC) microcontroller and on the Xilinx Virtex-E and Xilinx Spartan-XL Field Pro-
grammable Gate Arrays (FPGAs). As ARM Limited does not manufacture its own physical
silicon devices (the company is known as a “fab-less shop”), the particular microcontroller
used on this board is the Atmel AT91R40008 device, one of dozens available using the ARM
core from different manufacturers worldwide.

The DSLMU Microcontroller Board actually consists of two printed circuit boards connected
to each other: the MU Board, which contains most of the electronics, and the Expansion
Board, containing most of the peripherals and connectors. These boards were designed by
staff at the University of Manchester, England, and the School of Electrical Engineering,
University of New South Wales, Australia.

Physical Layout

The DSLMU Microcontroller Board is arranged as shown in Figure 1:

S
ec

o
nd

ar
y

S

er
ia

l P
o

rt

Pr
im

ar
y

S
er

ia
l P

o
rt

VA VB VC

Ex
p

an
si

on

C
o

nn
ec

to
r

1

Memory for
Virtex-E

(U9, U10,
U18, U19)

Flash
ROM
(U25)

Xilinx
V irtex-E

(U16)

S partan-
XL (U4)

Ethernet
(U7)

System Memory
SRAM Modules

(U11-U14, U21-U24)

Atmel
CPU
(U17)

JTAG

Boot

Power
Ethernet

Ex
p

an
si

on

C
o
nn

ec
to

r
2

SB

SB

SA

SA

VS

VS

P
o
w

er

LCD Module

Power 1

Power 2

P
o
w

er

Ground Link

P
o
w

er

0 1 2 3

7 4 5 6

LEDs

Spartan VS Terminals

Spartan SA Terminals

Spartan SB Terminals

O
n/

O
ff

S1 S2 S3

RESET

S witches Connector

S7 S8 S9 S10 S6 S5

LEDs Connector

LE
D

s

S4

Figure 1: Physical Layout

– 2 –

Note, in particular, the location of the On/Off power switch and the reset button. The elec-
tronics on the printed circuit boards are quite delicate, so you should always turn the
power off when wiring up any of your own circuits!1

The reset button restarts the Microcontroller Board in the case that the software you have
written manages to “crash” so badly that even pressing Stop in the GNU Debugger or in
Komodo does not help. This reset button should only be used as a last resort…

System Block Diagram

A systems-level view of the DSLMU Microcontroller Board is shown in Figure 2. You should
examine this diagram carefully to understand the operation of the board.

Microcontroller Bus

Peripheral Bus (Ports A and B)

MU Board Expansion Board

Flash ROM
(U25)

Serial Ports System Memory
SRAM Modules

(U11-U14,
U21-U24)

Optional
Ethernet

(U7)
Power
Supply

LEDs
(D8-D15)

Boot Select
Switch (U1)

LCD Module

Uncommitted
Switches

Uncommitted
LEDs SB SA VS VC VB VA

Optional
Memory

(U9, U10,
U18, U19)

Xilinx
Virtex-E
(U16)

Xilinx
Spartan-XL

(U4)

Expansion
Connector 2

Expansion
Connector 1

Atme l CPU
(U17)

Figure 2: System Block Diagram

The Microcontroller

The Atmel AT91R40008 microcontroller is at the heart of the DSLMU Microcontroller Board.
This microcontroller uses the ARM7TDMI core from ARM Limited and implements the
ARMv4T architecture. The AT91R40008 comes in a 100-pin plastic quad-flat (PQFP) package
and appears as U17 in the circuit diagram. A 32MHz crystal oscillator (U3) provides the
timing signal to the chip.

The microcontroller provides a bus (shown as the Microcontroller Bus in Figure 2) that con-
sists of the address lines A0–A21, the data lines D0–D15 and various control and interrupt
signals. Almost everything else on the board is connected to this bus, directly or indirectly.
This means that, ultimately, it is the microcontroller’s job to control everything else on the
board.

System Memory

Connected to the Microcontroller Bus is the system memory in the form of Static RAM mod-
ules and a Flash ROM module. U11–U14 and U21–U24 provide up to eight 256K × 16-bit

1 This has the unfortunate side-effect of wiping any program that you might have downloaded into the
memory. If you are careful and know what you are doing, you can leave the power on while wiring up
your own circuits. You must connect the ground (GND) wire first and leave the power (VCC) connec-
tion to last, of course, and do double-check everything before connecting the power!

– 3 –

memory modules for a total of up to 4 MB of read/write memory.2 This read/write memory
is where your programs are stored while being executed on the ARM microcontroller.

U25 provides 2 MB of read-only memory in the form of a Flash ROM. The Flash ROM is
where systems-level programs are stored. The Boot Select switch helps determine which of
these programs is run at start-up.

Field Programmable Gate Arrays

The main peripherals connected to the Microcontroller Bus are the two Field Programmable
Gate Arrays (FPGAs): the Xilinx Virtex-E and the Xilinx Spartan-XL. These FPGAs are
designed to be reprogrammed to become any sort of peripheral that you might want (within
limits, of course). For example, you could program the Spartan-XL FPGA to be a Real Time
Clock (a device that keeps track of the actual date and time), or to be a latch-and-debounce
circuit for input switches.

The Xilinx Spartan-XL FPGA appears as U4 in the circuit. This 100-pin chip comes from a
family of devices, each of which has different numbers of programmable gates. The par-
ticular FPGA on the DSLMU Microcontroller Board is the XCS10XL-4VQ100C, an integrated
circuit having up to 10,000 programmable system gates and a total of 77 programmable
input/output pins. Notice that 48 pins of the FPGA are attached to connectors SA, SB and
VS on the Expansion Board for input and/or output. You will be using these connectors,
and consequently the Spartan-XL FPGA, in many of your experiments.

The Xilinx Virtex-E FPGA appears as U16 in the circuit. This 240-pin chip comes from its
own family of rather expensive but highly functional devices. The particular FPGA used on
the DSLMU Microcontroller Board is the XCV300E-6PQ240C, with up to 412,000 program-
mable system gates and 158 programmable input/output pins; it may not appear on your
board due to cost constraints. Notice that 64 pins of this FPGA are attached to connectors
VA, VB and VC on the MU Board and to connector VS on the Expansion Board.

Up to 2 MB of Static RAM can be connected to the Xilinx Virtex-E FPGA. These RAM modules
are connected as two banks of 256K × 32 bits and appear as U10, U19, U9 and U18 in the
circuit.

One interesting feature of the DSLMU Microcontroller Board is that both the Spartan-XL and
Virtex-E FPGAs are connected to the same pins on connector VS. This means that you can
do some fancy FPGA programming to make one of the FPGAs control the other, or to make
both respond to the same external stimuli. However, you must be careful that you don’t
program both devices to drive the same pin (ie, as an output) at the same time: the result
would be an electrical conflict!3

Connected Peripherals

The DSLMU Microcontroller Board has a number of peripherals connected to the microcon-
troller, as shown in Figure 2. These include the serial ports, the LEDs on the MU Board, the
LCD module and the optional Ethernet controller.

The MU Board has two RS232 serial port connectors, J11 and J13. These are connected to
the Atmel AT91R40008 microcontroller via appropriate interface circuitry (see the circuit
diagram for more details). The serial ports are capable of transmitting and receiving data at
up to 115,200 baud, although without hardware flow control. Connector J11 is dedicated to
communicating with the Host PC: it is used to transfer your programs to the Microcontroller
Board and then to control them.

As you can see from Figure 2, the LEDs on the MU Board, the Boot Select switch and the
Liquid Crystal Display (LCD) module form a “mini-bus” of seven signals, connecting these

2 The DSLMU Microcontroller Boards in the Digital Systems Laboratory are only fitted with 512 KB of
memory, appearing as U21.
3 An electrical conflict occurs when two devices try to drive the same signal wire in different directions.
For example, think through what would happen if the Virtex-E tries pulling signal VS0 low (to GND),
but the Spartan-XL tries setting the same signal high (to VCC). Is the effect the same as a short-circuit?
(The answer is, essentially, yes!)

– 4 –

peripherals to the ARM microcontroller and the Xilinx FPGAs.4 This means that, with appro-
priate programming, any one of the microcontroller, the Spartan-XL or the Virtex-E can con-
trol what is displayed on the LCD module. If you choose to use this feature, note that it
becomes your responsibility to avoid potential electrical conflicts!

The Cirrus Logic CS8900A device (U7 in the circuit diagram) provides a single-chip 10 Mb
Ethernet connection to the DSLMU Microcontroller Board. It is connected directly to the
Microcontroller Bus but is usually only directly available to systems-level programs. This
device, and associated circuitry, is optional and may not be present on your board.

Uncommitted Peripherals

The Expansion Board contains a number of uncommitted switches and LEDs. These are
“uncommitted” in the sense that they are not connected to anything: you can use these
peripherals in your experiments, either connecting them to the FPGA input/output pins via
connectors SA, SB and VS, or to your own circuits. The switches include two debounced
push-buttons, two undebounced push-buttons, two debounced toggle switches and eight
undebounced DIP switches. Ten LEDs (in a bar-graph-style package) are available for use as
indicators. The section “Accessing the Peripherals” on page 16 covers these peripherals in
greater detail.

Detailed Schematic Diagrams

You can find the complete schematic diagrams for both the MU Board and the Expansion
Board on your CD-ROM in the board/schem directory. If possible, you should take the time
to examine these diagrams, as they will help you to understand the operation of the board.

Reading a well-drawn circuit diagram is like reading a well-written (and well-commented!)
computer program. Learning to read such diagrams will help you know how you should
draw your own, making you a better engineer and electronics designer. You can also look at
the original diagrams: they are an excellent example of what you should not do!

The Boot Select Switch

The DSLMU Microcontroller Board includes some simple start-up software in the Flash ROM
that is run every time the power is turned on (or the reset button is pressed). This start-up
software, in turn, starts (“boots up”) one of up to sixteen different systems-level programs;
the Boot Select DIP switch U1, in the bottom right-hand corner of the MU Board, is used to
determine which of these programs is started. This switch is shown in Figure 3:

Figure 3: Boot Select Switch

Important: Unless your Laboratory documents ask you to do otherwise, you should always
make sure that the Boot Select switch is set as shown in Figure 3. This selects the Komodo
ARM Environment, which is discussed in the remainder of this Hardware Reference Manual.5

4 The signals forming this bus, called the Peripheral Bus in Figure 2, are LC_D4–LC_D7, LC_EN, LC_RW
and LC_RS. An additional five signals (LC_D0–LC_D3 and LED_EN) connect the microcontroller to the
LEDs and the LCD module, but are not connected to the Xilinx FPGAs.
5 The other switch positions are not discussed in this document; if you are interested, see MU Board
On-board Software in the board/doc directory on your CD-ROM.

– 5 –

Komodo ARM Environment

The Komodo ARM Environment is a systems-level program stored in the Flash ROM of the
DSLMU Microcontroller Board. It is automatically run when the Boot Select switch is set to
the position shown in Figure 3.

The main task of the Komodo ARM Environment is to communicate with the Host PC
through the primary serial port, to download your own programs into the microcontroller’s
memory and to run and debug those programs. Komodo also provides you with controlled
access to certain microcontroller-based peripherals and to the FPGAs, as well as, of course,
to the ARM microcontroller itself.

Important: Much of this document only applies when the Komodo ARM Environment is run-
ning. You will need to refer to other documentation if you want to write systems-level pro-
grams; this documentation can be found on your CD-ROM in the board/doc directory.

Downloading Your Program

You need to use Komodo to download your programs to the DSLMU Microcontroller Board
and to debug them. Please see An Introduction to Komodo for more information; the fol-
lowing is a brief summary of that document.

To start Komodo, enter the following command line at the shell prompt:

kmd &

Once the Komodo window appears, you need to download your program to the actual hard-
ware. To do this, click on the second Browse button in the top right-hand corner (ie, the one
associated with the Load button, not the Compile button). A dialog box will appear that
allows you to choose your executable; do so, then click OK. Back in the main window, the
full file name will appear next to the Load button. Now, click on the Load button: this will
download your executable to the actual board.

To download an FPGA configuration into the Xilinx Spartan-XL device, click on the Features
button, then select the Spartan XSC10XL tab. You can now enter the name of your FPGA
program; the relevant file will have a .bit extension, as generated by the Xilinx software. To
download to the Xilinx Vertex-E FPGA, select the Virtex-E XCV300E tab instead.

Memory Map

The Komodo ARM Environment has the memory map shown in Table 1; this is also known
as its address space:

Start Address End Address Size Function

0x00000000 0x003FFFFF 4 MB Read/write memory (RAM)
0x00400000 0x0FFFFFFF (252 MB) (Unused)
0x10000000 0x1FFFFFFF 256 MB Microcontroller I/O space
0x20000000 0x2FFFFFFF 256 MB Xilinx Spartan-XL I/O space
0x30000000 0x3FFFFFFF 256 MB Xilinx Virtex-E I/O space
0x40000000 0xFFFFFFFF (3072 MB) (Unused)

Table 1: Komodo Memory Map

There are a few points to note about the memory map shown in this table. Firstly, if your
DSLMU Microcontroller Board has less than 4 MB of Static RAM modules, the end address of
read/write memory will be smaller. For example, if only 512 KB of RAM is included, the end
address will be 0x0007FFFF.

Secondly, although each of the memory map regions used by the three input/output spaces
is 256 MB in size, most of those regions are “wasted”. For example, the Microcontroller I/O

– 6 –

space only occupies 64 bytes out of 256 MB: talk about potential for expansion! Likewise,
the Spartan-XL I/O space is only 32 bytes in size and the Virtex-E I/O space is only 64 bytes
in size. You must only access addresses that are valid in that range.

Thirdly, you access input/output spaces in the same way that you access ordinary memory.
In other words, you use the standard ldr/ldrb/ldrh and str/strb/strh ARM instructions.

Finally, over three-quarters of the memory map is empty and unused. You should never let
your program access these unused memory spaces: doing so may cause unexpected and
erroneous behaviour!

Read/Write Memory

The read/write portion of the DSLMU Microcontroller Board’s system memory appears at
address 0x00000000. It extends to the last address available in that memory; in other
words, 0x003FFFFF if you have the full 4 MB of Static RAM installed, 0x0007FFFF if you have
only 512 KB, and so on.

All of this read/write memory is available for your use.6 By default, the GNU Linker places
your program at address 0x00008000, but you can override this by using the –T option. For
example, to place your program filename.elf at address 0x4000, use the following command
line:

arm-elf-ld -o filename.elf -Ttext=0x4000 filename.o

Please see the arm-elf-ld(1) manual page,7 or refer to the GNU Linker Reference Manual on
your CD-ROM (in the gnutools/doc directory), for more information.

Microcontroller I/O Space

The Komodo ARM Environment allows you to access certain peripherals in the microcon-
troller’s memory map. Although 256 MB of space is set aside for this purpose, starting at
address 0x10000000, only 64 bytes are defined at the start of this, and even then, most
addresses within this range are classified as “Reserved for future use”.

Table 2 shows the ports you can access within the Microcontroller I/O space as offsets from
address 0x10000000. These ports are all eight bits wide, and must be accessed with either
the ldrb or the strb ARM instruction:

Offset Mode Port Name Function

0x00 R/W Port A Bidirectional data port to LEDs, LCD, etc.
0x04 R/W Port B Control port (some bits are read only)
0x08 R/W Timer 8-bit free-running 1 kHz timer
0x0C R/W Timer Compare Allows timer interrupts to be generated
0x10 RO Serial RxD Read a byte from the serial port
0x10 WO Serial TxD Write a byte to the serial port
0x14 WO Serial Status Serial port status port
0x18 R/W IRQ Status Bitmap of currently-active interrupts
0x1C R/W IRQ Enable Controls which interrupts are enabled
0x20 WO Debug Stop Stops program execution when written to

Table 2: Microcontoller I/O Space

6 If you are wondering where the Komodo ARM Environment itself resides, the answer is that it uses an
alternative address space and additional on-chip RAM that you cannot access.
7 This rather cryptic notation simply means you type “man 1 arm-elf-ld” at the command line.

– 7 –

Accessing the Ports

The best way to access the Microcontroller I/O ports from your assembly language pro-
grams is to use a base-and-offset technique with the ldrb and strb ARM instructions. For
example:

.set iobase, 0x10000000 ; Base of the Microcontroller I/O space

.set portA, 0x00 ; Offset of Port A in the I/O space

.set portB, 0x04 ; Offset of Port B in the I/O space

ldr r2,=iobase ; Use R2 as a base address pointer

mov r0,#0b00010000 ; Set bit 4 and reset all other bits
strb r0,[r2,#portB] ; Send the data to Port B (R2 + portB)
mov r0,#0b10100101 ; R0 = data for the LEDs
strb r0,[r2,#portA] ; Send the data to Port A (R2 + portA)

Port A

Port A at offset 0x00 (ie, address 0x10000000) is a bidirectional data port used for a number
of purposes. It is connected to the eight LEDs in the top left-hand corner of the MU Board,
and to the data bus on the LCD module. These devices are explained further in the section
“Accessing the Peripherals”, on page 16. In the circuit diagram, the appropriate signals
from Port A are labelled LC_D0 to LC_D7; bit 0 of Port A is connected to LC_D0, and so on.

The direction of Port A is determined by bit 2 of Port B: if that bit is set to 0 (the default), all
eight bits of Port A are outputs. If it is set to 1, all eight bits of Port A are inputs.

Bits 4–7 of Port A are also connected to both the Xilinx Spartan-XL and Xilinx Virtex-E FPGAs
and are shown in Figure 2 as part of the Peripheral Bus. With some clever programming,
you can use these four bits as a general I/O interface to the FPGAs. You must ensure, how-
ever, that only one device writes to the LC_D4–LC_D7 signals at any one time. In other
words, if Port A is defined to be an output, the FPGAs must define the appropriate pins as
inputs. Conversely, if one of the FPGAs defines these pins as outputs, then Port A must be
programmed to be an input port (and the other FPGA must also define the pins as inputs).
Failure to keep this rule can cause electrical failure!

By referring to Figure 1, you can see that eight test-points are available between connectors
VC and JTAG. These test-points (labelled TP0 to TP7 on the MU Board) correspond to bits 0–
7 of Port A. You can connect an oscilloscope to these test-points (using the Ground Link as
the grounding point) to investigate what your program is writing to this port.

Port B

Port B at offset 0x04 (ie, address 0x10000004) is an 8-bit control and status port: most bits
define how the peripherals attached to Port A are to be controlled. The bit definitions for
this port are shown in Table 3:

Bit Mode Function

7 RO Push-button switch S2 on the Expansion Board: 1 = pressed
6 RO Push-button switch S3 on the Expansion Board: 1 = pressed
5 R/W LCD backlight: 0 = disabled, 1 = enabled (has no effect)
4 R/W LEDs enable: 0 = disabled, 1 = enabled
3 — (Reserved: must be written as 0)
2 R/W Port A direction, LC_RW: 0 = output (write), 1 = input (read)
1 R/W LC_RS: 0 = control register, 1 = data register
0 R/W LC_EN: 0 = disabled, 1 = enabled

Table 3: Port B Bit Definitions

Writing to Port B (using the strb ARM instruction) will set or reset the appropriate bits; it
will also drive particular signals on the physical board high or low. Reading from this port
(using the ldrb ARM instruction) will usually return the last value written to each bit.

– 8 –

Bits 0–2 are used to control the LCD module and correspond to the LC_EN, LC_RS and
LC_RW signals respectively. Bit 2 (LC_RW) also controls the direction of Port A: if set to
zero, all eight bits of Port A become outputs. If set to one, these eight bits become inputs.

Bit 3 is reserved for future use: you must always write 0 to this bit.

Bit 4 is used to allow or disallow data to be written to the LEDs on the MU Board. Writing a
one to this bit makes the LEDs display whatever is currently on Port A. Writing a zero to
this bit disables the LEDs entirely (ie, turns the LEDs off).8 This bit corresponds to LED_EN
in the circuit diagram.

Bit 5 is connected to the NLCD_BK_LT signal on the MU Board and controls the LCD back-
light. Setting or resetting this bit has no effect on your board, as the LCD does not have a
backlight installed. For this reason, you should always set this bit to zero.

Reading bits 6 and 7 returns the current state of push-button switches S2 and S3 on the
Expansion Board. Writing to these bits has no effect. See page 18 for more information on
using these switches.

Timer Port

The Timer port at offset 0x08 (ie, address 0x10000008) provides an 8-bit timer that “runs
free” at 1 kHz. The purpose of a free-running timer is to accurately measure time intervals
and allow you to write time-dependant delay loops. Reading a byte from this port will
return a value between 0 and 255 (0x00 and 0xFF). The value available for reading will be
incremented every 1 ms (ie, 1000 times a second); when the value reaches 0xFF, it will be
automatically reset to 0x00.

Writing to this port will set the timer to the value written. Please be aware that, due to
internal timing issues, the first iteration of the newly-set timer may be ±1 ms of its true
time. In other words, the first increment may be made immediately, or it might only happen
almost 2 ms after the timer reset. Increments after this should be accurate.

Timer Compare Port

The Timer Compare port at offset 0x0C (ie, address 0x1000000C) is used by the internal
timer to generate interrupts: if bit 0 of the IRQ Enable port is set to 1, an interrupt to the
ARM microcontroller is generated every time the Timer port value equals the value stored in
the Timer Compare port.

Please note that, once the interrupt is generated, the Timer port value is not reset to zero:
that is your program’s responsibility. By setting the Timer port to zero on each interrupt,
your program gains the ability to generate interrupts with intervals of between 1 ms and
255 ms,9 that is, between 1000 times a second to just under 4 times a second.

Serial RxD Port

The Serial RxD port at offset 0x10 (ie, address 0x10000010) allows you to read the user
input stream from the Host PC.10 Assuming bit 0 of the Serial Status port is 1, reading a
value from this Serial RxD port retrieves the next byte from the user input stream. If bit 0
of the Serial Status port is zero, reading a value from this Serial RxD port returns an unde-

8 For those technically inclined, the reason that the LEDs only ever display what is currently on Port A,
instead of latching values written to Port A, is that the MU Board uses a 74HC244 octal line buffer for
U6 instead of a 74HC373 octal transparent latch.
9 You can generate interrupts every 256 ms if you do not reset the Timer port, in other words, if you
allow the timer to roll over.
10 The user input stream contains the ASCII codes of key-presses typed into the Terminal window of
the debugger on the Host PC. If you are wondering how the microcontroller “knows” how to read
bytes from the debugger, the answer is that it is actually the Komodo ARM Environment doing all of
the hard work: it translates your ldrb instruction into the ARM instructions needed to do the job.
This allows the same physical serial port cable to be used both for user input and for controlling your
program via the debugger.

– 9 –

fined value. This port is read-only: writing to offset 0x10 actually accesses the Serial TxD
port.

An example is probably the best way to explain the Serial RxD port. Assume the user
pressed the keys J N Z ENTER, in that order, in the Terminal window of the debugger.11 This
would place the bytes 0x4A, 0x4E, 0x5A and 0x0A into the input stream. The following
code fragment would then read those four bytes:

 .set iobase, 0x10000000 ; Base of Microcontroller I/O space
 .set ser_RxD, 0x10 ; Serial RxD port
 .set ser_stat, 0x14 ; Serial Status port
 .set ser_Rx_rdy, 0b01 ; Test bit 0 for RxD ready status

readfour:
 bl readbyte ; Read first byte (0x4A = 'J')
 bl readbyte ; Read second byte (0x4E = 'N')
 bl readbyte ; Read third byte (0x5A = 'Z')
 bl readbyte ; Read fourth byte (0x0A = '\n')
 ...

readbyte: ; Wait for and read a byte from the user input stream into R0;
 ; destroys the contents of R1.

 ldr r1,=iobase ; R1 = base address of I/O space
rb1:
 ldrb r0,[r1,#ser_stat] ; Read the serial port status
 tst r0,#ser_Rx_rdy ; Check whether a byte is ready to be read
 beq rb1 ; (No: jump back and try again)

 ldrb r0,[r1,#ser_RxD] ; Read the available byte into R0
 mov pc,lr ; and return to caller

Serial TxD Port

The Serial TxD port at offset 0x10 (ie, address 0x10000010) allows you to write to the user
output stream to the Host PC. You should always check that bit 1 of the Serial Status port
is 1 before writing to this port. Anything written to this port (ie, written into the user out-
put stream) will appear in the Terminal window of the debugger on the Host PC. The stan-
dard ASCII table is used to display bytes written in this way; writing the character 0x0A12

will start a new line in that window.

This port is write-only: reading from offset 0x10 actually accesses the Serial RxD port.

Serial Status Port

The Serial Status port at offset 0x14 (ie, address 0x10000014) indicates the status of the
user input and output streams that feed the Serial RxD and Serial TxD ports respectively.

Bit 0 indicates whether a byte is available for reading from the Serial RxD port. If this bit is
one, a byte representing the user’s input can be read. If this bit is zero, nothing is available
to be read; in this case, reading from the Serial RxD port will return an undefined value.

Bit 1 indicates whether the serial port transmitter (connected to the user output stream) is
ready to accept a byte of data. If this bit is one, you can safely write to the Serial TxD port.
If this bit is zero, writing to the Serial TxD port can cause previously-written data to be lost.

This port is read-only: writing to it has no effect.

11 To open the Terminal window from within the Komodo debugger, click on the Features button, then
select the Terminal tab. You will need to make sure that Active is selected.
12 The character 0x0A, also known as LF, can be represented as '\n' in C and assembly language pro-
grams. '\n' is known as the new-line character in Unix and POSIX-compliant systems.

– 10 –

IRQ Status

The IRQ Status port at offset 0x18 (ie, address 0x10000018) indicates whether or not
peripherals are trying to interrupt the ARM microcontroller. A bit set to one in this port
indicates that peripheral is generating an interrupt; a zero means it is not. The bit defini-
tions for this port are shown in Table 4:

Bit Mode Function

7 R/W Push-button switch S2 on the Expansion Board
6 R/W Push-button switch S3 on the Expansion Board
5 R/W Serial port transmitter ready
4 R/W Serial port receiver ready
3 — (Reserved)
2 R/W Xilinx Virtex-E interrupt request
1 R/W Xilinx Spartan-XL interrupt request
0 R/W Timer Compare interrupt request

Table 4: IRQ Status Port Bit Definitions

Apart from reading this port (to see which peripheral generated the interrupt), you can also
write to it to set (using a 1) or clear (using a 0) interrupt requests. Your interrupt handler
should always write a 0 into the appropriate bit to indicate that it has handled the interrupt.

IRQ Enable Port

The IRQ Enable port at offset 0x1C (ie, address 0x1000001C) is used by the peripheral con-
troller to allow or disallow a peripheral from interrupting the ARM microcontroller. Reading
this port returns the last value written to it.

When a bit in this port is set to 1, and that peripheral generates an interrupt (setting the
corresponding IRQ Status port bit to 1), an IRQ Exception is generated by the ARM micro-
controller. When the bit in this port is set to 0, no IRQ Exception is generated, even if the
peripheral tries to interrupt (by setting the corresponding IRQ Status port bit to 1). The bit
definitions for this port are exactly the same as for the IRQ Status port, as shown in Table 4.

Once the IRQ Exception is generated, the ARM microcontroller saves the current execution
address and register flags, then jumps to the code stored at address 0x00000018. Please
see page A2-19 in the ARM Architecture Reference Manual (page 51 in the PDF version) for
more details; you can find this document in the reference directory on your CD-ROM.

Debug Stop Port

The Debug Stop port at offset 0x20 (ie, address 0x10000020) is used by the Komodo ARM
Environment as an interface to the debugger running on the Host PC. Writing any value to
this port (using the strb ARM instruction) will stop your program’s execution and return
control to the debugger. You should only access this port when debugging—it is not meant
to be a general-purpose method of stopping your programs!13

13 If you are wondering how the microcontroller “knows” how to access the debugger in a remote (to it)
location, the answer is that it is all an illusion: the Komodo ARM Environment performs considerable
trickery on your behalf, so that a simple write to this port is translated into many ARM instructions
that do what is needed. If you are interested, you can find the source code to the Komodo ARM Envi-
ronment in the board/src/monitor directory on your CD-ROM; look at the file imp.s in particular.

– 11 –

Xilinx Spartan-XL FPGA

One of the main peripherals on the DSLMU Microcontroller Board is the Xilinx Spartan-XL
XCS10XL-4VQ100C Field Programmable Gate Array (FPGA). This 100-pin device appears as
U4 in the circuit; it contains up to 10,000 programmable system gates and a total of 77 pro-
grammable input/output pins. This FPGA is designed to be reprogrammed to become any
sort of peripheral that you might want (within the limits of the device, of course).

External Connections

As you can see from Figure 2, there are three main groups of signals (“buses”) attached to
the Xilinx Spartan-XL FPGA on the DSLMU Microcontroller Board.

The first group of signals is the Microcontroller Bus. This connection consists of 16 signals:
the data lines D0–D7, the address lines A0–A4, a chip select signal (SPARTAN_CS), a read
signal (NRD_NOE) and a write signal (NWR0_NWE). These signals allow the ARM microcon-
troller, and hence your programs, to communicate with the Xilinx Spartan-XL FPGA.

The second group is the Peripheral Bus, which consists of seven signals: the four data lines
LC_D4–LC_D7,14 the LCD Enable signal (LC_EN), the LCD Read/Write signal (LC_RW) and the
LCD Register Select signal (LC_RS). This means that, if programmed correctly, the FPGA can
control the LCD module on the Expansion Board. However, you must first disable Ports A
and B in the microcontroller; this is not possible in the current version of the Komodo
ARM Environment.

The third group consists of the 48 signals routed to the connectors SA, SB and VS on the
Expansion Board. These signals are labelled SA0–SA15, SB0–SB15 and VS0–VS15 in the cir-
cuit diagram. Note that the signals VS0–VS15 are also connected to the Xilinx Virtex-E FPGA:
with some fancy FPGA programming, you can use these signals to communicate between the
two FPGAs. Please remember, however, that you must ensure that only one device drives
any given pin (as an output) at any one time. Breaking this rule can lead to electrical
conflicts!

A number of other signals connect the ARM microcontroller to the Xilinx Spartan-XL FPGA.
However, most of these are only meaningful in systems-level programs. One signal that is
important is S_IRQ: pulling this high generates an interrupt request to the ARM microcon-
troller. This interrupt request is reflected in bit 1 of the IRQ Status port.

Microcontroller Interface

As already mentioned, the Microcontroller Bus signals connect the Xilinx Spartan-XL FPGA to
the ARM microcontroller. These 16 signals allow your programs to access the FPGA using
standard ldrb and strb ARM instructions.

As you can see from Table 1, this FPGA can be accessed by reading from and writing to the
Xilinx Spartan-XL I/O space. In fact, as only five address lines are routed to the FPGA, only
32 unique addresses are valid in this I/O space: addresses 0x20000000 to 0x2000001F. You
must only access the FPGA using addresses in this range.

Please note that the effects of reading from or writing to valid addresses within the Xilinx
Spartan-XL I/O space depend on how the FPGA was programmed, in other words, what FPGA
design is currently in the device. You can make the Spartan-XL to respond in any way
appropriate (or inappropriate!) by placing your own FPGA design into the device.

If you want your FPGA design to correctly interface to the ARM microcontroller, you must
meet the specific timing requirements that that microcontroller places on the Xilinx Spartan-
XL. This is because the Spartan-XL FPGA is just one of the devices attached to the Microcon-
troller Bus; each device on this bus must follow the standard Atmel AT91 read/write

14 Please note that the four signals LC_D0–LC_D3 are not connected to the FPGA. This means that the
LCD Module must be controlled using the four-bit interface mode, not the eight-bit interface mode.
See the section “Accessing the Peripherals” on page 16 for more information.

– 12 –

timings. This allows the ARM microcontroller to correctly access the peripherals using stan-
dard ldr/ldrb/ldrh and str/strb/strh ARM instructions. In this specific case, the
specific timing requirements are shown in Figure 4 (for reading from the FPGA into the
microcontroller) and in Figure 5 (for writing to the FPGA from the microcontroller). MCKI is
the 32 MHz system clock (generated by U3) that is connected to pad P54 on the Xilinx Spar-
tan-XL FPGA; all timings are rounded to the nearest nanosecond.

8 ns min.

MCKI

SPARTAN_CS

A0–A4

NRD_NOE

D0–D7
(from FPGA)

~ 15 ns ~ 15 ns

90 ns min.

90 ns min.

75 ns min.

Valid Data

Figure 4: Read from Xilinx Spartan-XL FPGA Timing Diagram

MCKI

SPARTAN_CS

A0–A4

NWR0_NWE

D0–D7
(to FPGA)

~ 15 ns ~ 15 ns

90 ns min.

90 ns min.

60 ns min.

75 ns min.

Figure 5: Write to Xilinx Spartan-XL FPGA Timing Diagram

Please note that the actual details of creating and implementing a design for the Spartan-XL
FPGA is beyond the scope of this document.

FPGA Pin Configuration

Table 5 shows the definitions of each pad (pin) on the Xilinx Spartan-XL XCS10XL-4VQ100C
FPGA. You will need this information to define the input and/or output interfaces needed
for your design using; how to do so is beyond the scope of this document.

A few notes are in order regarding this table. The Pad column indicates the pin number, as
specified by the device’s datasheet. Only user-programmable pads that are accessible on the
DSLMU Microcontroller Board have been included in this table. The Name column gives the
Xilinx name for this pin. The Signal column gives the name of the signal, as used in the MU
Board circuit diagram. The Dir column indicates the direction in which this pin must be
programmed; “Any” means that you can program this pin to be any direction you wish. The
Notes column refers to comments following the table.

– 13 –

Please note that you most likely will need to refer to the datasheet for the Xilinx Spartan-XL
device as you read this table; you can find this datasheet in the board/doc/data directory on
your CD-ROM.

Pad Name Signal Dir Notes
P2 I/O, GCK1 SA0 Any 1
P3 I/O SA1 Any 1
P4 I/O, TDI NRD_NOE In 2, 3
P5 I/O, TCK SPARTAN_CS In 2, 4
P6 I/O, TMS NWR0_NWE In 2, 5
P7 I/O SA2 Any 1
P8 I/O SA3 Any 1
P9 I/O SA4 Any 1
P10 I/O SA5 Any 1
P13 I/O SA6 Any 1
P14 I/O SA7 Any 1
P15 I/O SA8 Any 1
P16 I/O SA9 Any 1
P17 I/O SA10 Any 1
P18 I/O SA11 Any 1
P19 I/O SA12 Any 1
P20 I/O SA13 Any 1
P21 I/O, GCK2 SA14 Any 1
P27 I/O, GCK3 SA15 Any 1
P28 I/O, HDC FIQ_B0 In/Out 6
P29 I/O SB0 Any 7
P31 I/O SB1 Any 7
P32 I/O SB2 Any 7
P33 I/O SB3 Any 7
P34 I/O SB4 Any 7
P35 I/O SB5 Any 7
P36 I/O, INIT# NSPARTAN_INIT In 8
P39 I/O SB6 Any 7
P40 I/O SB7 Any 7
P41 I/O SB8 Any 7
P42 I/O SB9 Any 7
P43 I/O SB10 Any 7
P44 I/O SB11 Any 7
P45 I/O SB12 Any 7
P46 I/O SB13 Any 7
P47 I/O SB14 Any 7
P48 I/O, GCK4 SB15 Any 7
P53 I/O, D7 D7 In/Out 2, 9
P54 I/O, GCK5 MCKI In 10
P55 I/O, D6 D6 In/Out 2, 9

Pad Name Signal Dir Notes
P56 I/O A4 In 2, 11
P57 I/O, D5 D5 In/Out 2, 9
P58 I/O A1 In 2, 11
P59 I/O A2 In 2, 11
P60 I/O A3 In 2, 11
P61 I/O, D4 D4 In/Out 2, 9
P62 I/O A0 In 2, 11
P65 I/O, D3 D3 In/Out 2, 9
P66 I/O LC_D4 In, I/O 12, 13
P67 I/O LC_D5 In, I/O 12, 13
P68 I/O, D2 D2 In/Out 2, 9
P69 I/O LC_D6 In, I/O 12, 13
P70 I/O, D1 D1 In/Out 2, 9
P71 I/O LC_D7 In, I/O 12, 13
P72 I/O, D0 D0 In/Out 2, 9
P73 I/O, GCK6 BAUD_CLK In 14
P74 CCLK SPARTAN_CCLK In, Out 15
P76 O, TDO S_IRQ Out 16
P78 I/O LC_RW In, Out 17, 18
P79 I/O, GCK7 TIM_B1 In 19
P80 I/O, CS1 LC_RS In, Out 17, 18
P81 I/O LC_EN In, Out 17, 18
P82 I/O VS0 Any 20
P83 I/O VS1 Any 20
P84 I/O VS2 Any 20
P85 I/O VS3 Any 20
P86 I/O VS4 Any 20
P87 I/O VS5 Any 20
P90 I/O VS6 Any 20
P91 I/O VS7 Any 20
P92 I/O VS8 Any 20
P93 I/O VS9 Any 20
P94 I/O VS10 Any 20
P95 I/O VS11 Any 20
P96 I/O VS12 Any 20
P97 I/O VS13 Any 20
P98 I/O VS14 Any 20
P99 I/O, GCK8 VS15 Any 20

Table 5: Xilinx Spartan-XL Pin Configuration

Notes on Table 5:

1. Connected to connector SA on the Expansion Board.

2. Microcontroller Bus signal, connected to the ARM microcontroller.

3. Active-low read signal (to send data from the FPGA to the ARM microcontroller).

4. Active-high chip select signal.

5. Active-low write signal (to accept data from the ARM microcontroller to the FPGA).

6. Connected to the Fast IRQ/P12 pin on the ARM microcontroller (useful only in systems-
level programs).

7. Connected to connector SB on the Expansion Board.

8. Also connected to switch S3 on the Expansion Board; Low = pressed.

9. Data signal from the ARM microcontroller.

10. 32 MHz system clock, generated by U3.

11. Address signal from the ARM microcontroller.

12. Peripheral Bus signal, connected to the LCD module and to Port A on the ARM micro-
controller.

– 14 –

13. If the FPGA is to control the LCD module, program to be an input/output pin and disable
Ports A and B in the Microcontroller I/O space (not possible in the current version of the
Komodo ARM Environment). Otherwise (and by default), program to be an input-only
pin.

14. Serial port baud clock from the ARM microcontroller.

15. Externally-derived clock for programming the Xilinx Spartan-XL FPGA. After configura-
tion, this signal can only be used for read-back (useful in systems-level mode only).

16. Active-high signal connected to the IRQ 0 pin on the ARM microcontroller.

17. Peripheral Bus signal, connected to the LCD module and to Port B on the ARM micro-
controller.

18. If the FPGA is to control the LCD module, program to be an output-only pin and disable
Ports A and B in the Microcontroller I/O space (not possible in the current version of the
Komodo ARM Environment). Otherwise (and by default), program to be input-only pin.

19. Connected to the programmable timer on the ARM microcontroller. This signal is also
called TIOB2.

20. Connected to connector VS on the Expansion Board.

Default Configuration

The Komodo ARM Environment provides a default configuration for the Xilinx Spartan-XL
FPGA. This means that you can use this device from within your programs without needing
to first program the FPGA. You can find the schematic diagram of this default configuration
in the board/schem directory on your CD-ROM.

The default configuration implements six 8-bit programmable bidirectional ports that are
attached to connectors SA, SB and VS on the Expansion Board. Table 6 shows the ports you
can access for this configuration as offsets from address 0x20000000. These ports are all
eight bits wide, and must be accessed with either the ldrb or the strb ARM instruction:

Offset Mode Port Name Function

0x00 R/W SA0 Data Data input and/or output for SA0–SA7
0x01 R/W SA0 Control Control port for SA0–SA7
0x02 R/W SA1 Data Data input and/or output for SA8–SA15
0x03 R/W SA1 Control Control port for SA8–SA15
0x04 R/W SB0 Data Data input and/or output for SB0–SB7
0x05 R/W SB0 Control Control port for SB0–SB7
0x06 R/W SB1 Data Data input and/or output for SB8–SB15
0x07 R/W SB1 Control Control port for SB8–SB15
0x08 R/W VS0 Data Data input and/or output for VS0–VS7
0x09 R/W VS0 Control Control port for VS0–VS7
0x0A R/W VS1 Data Data input and/or output for VS8–VS15
0x0B R/W VS1 Control Control port for VS8–VS15

Table 6: Default Xilinx Spartan-XL I/O Space

As this table shows, there are really only two types of ports in this default configuration:
data ports and control ports. Data ports are connected to the corresponding pins; these
pins can be individually programmed to be inputs or outputs. Control ports allow you to set
the direction of the corresponding data port pins.

The control ports have the following bit definitions; each bit controls the direction of the
associated pin:

– 15 –

Bit
Port
SA0

Port
SA1

Port
SB0

Port
SB1

Port
VS0

Port
VS1

7 SA7 SA15 SB7 SB15 VS7 VS15
6 SA6 SA14 SB6 SB14 VS6 VS14
5 SA5 SA13 SB5 SB13 VS5 VS13
4 SA4 SA12 SB4 SB12 VS4 VS12
3 SA3 SA11 SB3 SB11 VS3 VS11
2 SA2 SA10 SB2 SB10 VS2 VS10
1 SA1 SA9 SB1 SB9 VS1 VS9
0 SA0 SA8 SB0 SB8 VS0 VS8

Table 7: Mapping of Port Bits to Pins

Writing a one to any control port bit makes the corresponding pin an input. Writing a zero
makes the corresponding pin an output. Reading the control port returns the last value
written to it. At reset, all pins are initialised as inputs.

The data ports have the same bit definitions as shown in Table 7; each bit is connected to its
corresponding pin.

When a pin is configured as an output, writing a one to the corresponding data port bit
makes the pin High (ie, sets the output to be VCC, in other words, 3.3V). Writing a zero to
the bit makes the pin Low (ie, sets the output to be GND, that is, 0V). Reading this bit
returns the last value written to it.

When a pin is configured as an input, reading the corresponding data port bit returns the
current value of the pin: 1 is returned if the pin is High, 0 if it is Low. Writing to this bit
(while defined as an input) sets the future value of the pin: the value the pin will become if it
is ever redefined to be an output.

An example is probably the best way to illustrate how these ports can be used from within
your own programs:

.set spartan_base, 0x20000000 ; Base of the Spartan-XL I/O space

.set VS1_data, 0x0A ; Offset to Port VS1 Data

.set VS1_ctrl, 0x0B ; Offset to Port VS1 Control

ldr r2,=spartan_base ; Use R2 as a base address pointer

mov r0,#0b11000111 ; R0 = value for Port VS1 Control
 ; VS8 = input VS12 = output
 ; VS9 = input VS13 = output
 ; VS10 = input VS14 = input
 ; VS11 = output VS15 = input
strb r0,[r2,#VS1_ctrl] ; Set directions of VS8-VS15
mov r0,#0b00101011 ; R0 = value for Port VS1 Data
 ; VS8 = High VS12 = Low
 ; VS9 = High VS13 = High
 ; VS10 = Low VS14 = Low
 ; VS11 = High VS15 = Low
 ; (Only VS11, VS12 and VS13 will be changed;
 ; other values are for the future)
strb r0,[r2,#VS1_data] ; Set values of VS8-VS15 (VS11-VS13)
ldrb r1,[r2,#VS1_data] ; R1 = current values and inputs for VS8-
 ; VS15 (bits 3-5, ie, VS11, VS12 and VS13,
 ; are previously written values, 101 in
 ; binary)
mov r0,#0b00000000 ; Make VS8-VS15 all to be outputs
strb r0,[r2,#VS1_ctrl] ; Now VS8-VS10 and VS14-VS15 become values
 ; set previously, ie, 0b00XXX011. VS11-VS13
 ; retain their previous value of 101.

– 16 –

Accessing the Peripherals

As already shown in Figure 1 and Figure 2, the DSLMU Microcontroller Board contains a
number of connected peripherals and a number of uncommitted peripherals.

The connected peripherals are those connected directly to the ARM microcontroller. These
include the eight LEDs on the MU Board, the LCD module and the two push-button switches
S2 and S3. These peripherals can be accessed via Port A and/or Port B in the Microcontrol-
ler I/O space.

The uncommitted peripherals are those on the Expansion Board that are not connected to
the ARM microcontroller. These include eight undebounced switches in a DIP-style package
(S4), two debounced toggle switches (S5 and S6), two debounced push-buttons (S7 and S8),
two undebounced push-buttons (S9 and S10) and ten LED indicators in a bar-graph-style
package (D1). You can connect these peripherals to the FPGA input/output pins via connec-
tors SA, SB and VS, or to your own circuits, as required for your experiments.

On-board LEDs

The eight LEDs in the top left-hand corner of the MU Board are connected to the eight bits of
Port A in the Microcontroller I/O space, and are controlled by bit 4 of Port B. Each LED is
connected to one bit of Port A in the arrangement shown in Figure 6:

Bit 7
Blue

Bit 3
Blue

Bit 0
Green

Bit 1
Yellow

Bit 2
Red

Bit 4
Green

Bit 5
Yellow

Bit 6
Red

Figure 6: On-board LEDs

Writing a one to any one of these bits in Port A will turn that LED on (assuming the LEDs
have been enabled). Writing a zero will turn that LED off.

Writing a one to bit 4 of Port B enables the LEDs: it makes the LEDs display whatever is cur-
rently on Port A. Writing a zero to this bit disables the LEDs entirely (ie, turns the LEDs off).

A typical program to display an appropriate pattern on the LEDs is:

.set iobase, 0x10000000 ; Base of the Microcontroller I/O space

.set portA, 0x00 ; Offset to Port A in the I/O space

.set portB, 0x04 ; Offset to Port B in the I/O space

ldr r2,=iobase ; Use R2 as a base address pointer

mov r0,#0b00010000 ; Enable the LEDs (set bit 4)
strb r0,[r2,#portB] ; Send the data to Port B
mov r0,#0b01010101 ; Turn on both green and both red LEDs
strb r0,[r2,#portA] ; Send the data to Port A

LCD Module

The DSLMU Microcontroller Board comes with a 20-character × 4-line Liquid Crystal Display
(LCD) module. This module can be controlled via the eight bits of Port A (the LCD data bus)
and bits 0–2 of Port B (the LCD control signals) in the Microcontroller I/O space, and via the
Peripheral Bus signals attached to the FPGAs. This arrangement is shown in Figure 7.

– 17 –

Port B

Port A

LCD Module

Other
devices

Direction

Internal
Bus

Microcontro ller

to the FPGAs

LC_EN

LC_RS

LC_RW
R/W

RS

E

D
0

–D
7

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Figure 7: Physical Interface to the LCD Module

The LCD module is quite a complex device and supports both read and write operations.
Writing to the device is accomplished by setting bit 2 of Port B (LC_RW) to zero; reading
from the device is done by setting this bit to 1. In either case, you must satisfy the require-
ments shown in bold in the timing diagrams of Figure 8 and Figure 9:

LC_RS
(Port B bit 1)

LC_RW
(Port B bit 2)

LC_EN
(Port B bit 0)

LC_D0–LC_D7
(from LCD)

60 ns

500 ns min.

300 ns min.

190 ns max.

10 ns

Valid Data

Figure 8: Read from LCD Module Timing Diagram

LC_RS
(Port B bit 1)

LC_RW
(Port B bit 2)

LC_EN
(Port B bit 0)

LC_D0–LC_D7
(to LCD)

40 ns

500 ns min.

230 ns min.

100 ns min.

10 ns

10 ns

Figure 9: Write to LCD Module Timing Diagram

– 18 –

These timing requirements are more than adequately satisfied15 under the Komodo ARM En-
vironment by the following code fragments. Assume the following lines have been defined:

 .set iobase, 0x10000000 ; Base of Microcontroller I/O space
 .set portA, 0x00 ; Offset of Port A
 .set portB, 0x04 ; Offset of Port B
 .set LC_RW, 0b00000100 ; Bit 2: LCD Read/Write signal
 .set LC_RS, 0b00000010 ; Bit 1: LCD Register Select signal
 .set LC_EN, 0b00000001 ; Bit 0: LCD Enable signal

 ldr r2,=iobase ; Use R2 as the base address pointer

Writing to the LCD module can then be done with a minimum of four strb ARM instruc-
tions. For example, the following code reads from the LCD Data register:

write_lcd_data: ; Write data in R0 to LCD Data register; destroys R1
 ...
 mov r1,#(LC_RS & (! LC_RW) & (! LC_EN)) ; Set R1 to LCD signal
 strb r1,[r2,#portB] ; LC_RS but not LC_RW and not LC_EN
 strb r0,[r2,#portA] ; Write data to LCD
 eor r1,r1,#LC_EN ; Toggle LC_EN bit of R1
 strb r1,[r2,#portB] ; This enables the LCD module
 eor r1,r1,#LC_EN ; Toggle LC_EN again to disable the LCD module
 strb r1,[r2,#portB] ; LCD module latches the data at this point
 ...

Similarly, reading from the LCD module can be done with a minimum of three strb ARM
instructions and one ldrb instruction. For example, the following code reads from the LCD
Control register:

read_lcd_control: ; Read from LCD Control register to R0
 ...
 mov r1,#(LC_RW & (! LC_RS) & (! LC_EN)) ; Set R1 to LCD signal
 strb r1,[r2,#portB] ; LC_RW but not LC_RS and not LC_EN
 eor r1,r1,#LC_EN ; Toggle LC_EN bit of R1
 strb r1,[r2,#portB] ; This enables the LCD module
 ldrb r0,[r2,#portA] ; Read the data into R0
 eor r1,r1,#LC_EN ; Toggle LC_EN again
 strb r1,[r2,#portB] ; This disables the LCD module
 ...

Please note that these routines are not complete by themselves: any routines that access the
LCD module should always check the Busy flag before writing to it! This flag can be
accessed by reading bit 7 of Port A when Port B is set to 0b00000101 (ie, LC_RW and LC_EN
set to 1, LC_RS set to 0).

Programming the LCD module correctly and efficiently can be quite complicated and is
beyond the scope of this document. You will need to consult the Optrex Character LCD
Module User’s Manual for more information; you can find this document on your CD-ROM in
the board/doc/data directory.

Switches S2 and S3

Push-button switches S2 and S3 on the Expansion Board16 are connected to bits 7 and 6 of
Port B, respectively, in the Microcontroller I/O space. Reading these two bits returns the
current state of the switches: if a bit is set to 1, that switch is currently being pressed. For
example:

.set iobase, 0x10000000 ; Base of the Microcontroller I/O space

.set portB, 0x04 ; Offset to Port B in the I/O space

.set sw_S2, 0b10000000 ; Bit 7 = switch S2

.set sw_S3, 0b01000000 ; Bit 6 = switch S3

ldr r2,=iobase ; Use R2 as a base address pointer

15 The reason is that an average mov, ldrb or strb instruction takes approximately 13 µs to execute
under the Komodo ARM Environment. This assumes, of course, that U3 generates a 32 MHz clock.
16 These two switches also appear on the MU Board, next to the eight LEDs. You can use either the
switches on the Expansion Board, or those on the MU Board, as the switches form a “wired-OR” circuit.

– 19 –

ldrb r0,[r2,#portB] ; Read the current value of Port B
tst r0,#sw_S2 ; Is S2 being pressed?
bne handle_S2 ; Yes, jump to handle_S2
tst r0,#sw_S3 ; Is S3 being pressed?
bne handle_S3 ; Yes, jump to handle_S3

Switches S2 and S3 can also generate interrupt requests in the ARM microcontroller: press-
ing one of these two switches sets the corresponding bit in the IRQ Status port in the Micro-
controller I/O space: bit 7 is set for switch S2, bit 6 for S3. It is up to your programs to clear
these bits, usually at the end of their interrupt service routines. Please see the description
of the IRQ Status and IRQ Enable ports on page 10 for more information.

In addition to being connected to the ARM microcontroller, both switches are connected to
the Field Programmable Gate Arrays. Switch S2 is connected to pad P36 on the Xilinx Spar-
tan-XL FPGA, and switch S3 is connected to pad P123 on the Xilinx Virtex-E FPGA. Both
switches are active low: a Low voltage (GND, that is, 0V) indicates the switch is being
pressed, a High voltage (VCC, ie, 3.3V) indicates it is not.

Please note that neither S2 nor S3 is debounced. In other words, pressing one of these
switches or releasing it can cause the physical switch to make or break contact multiple
times before settling to the correct value. This “bouncing” gives a waveform similar to that
shown in Figure 10:17

typ. < 25 ms typ. < 25 ms

Figure 10: Typical Switch Contact Bounce

DIP Switches S4

Switch S4 on the Expansion Board provides eight uncommitted on/off switches in a single
package. Each of the eight switches is connected to the corresponding screw terminal con-
nector on the Expansion Board. You can use these switches in your own circuits, or connect
them to the Xilinx Spartan-XL connectors SA, SB and VS.

Each switch is active low: turning the switch on gives a Low output (ie, sets the output to be
GND, that is, 0V), turning it off gives a High output (ie, sets the output to VCC, in other
words, 3.3V). This is somewhat counter-intuitive, so please be careful!

None of eight switches comprising S4 are debounced. In fact, these switches seem particu-
larly susceptible to contact bounce, as you will see if you connect an appropriately-config-
ured oscilloscope!

17 Figure 10 shows contact bounce for a generic active-high switch. Please remember that switches S2
and S3 are active low! In addition, contact bounce is usually only present on either the rising edge or
the falling edge of the signal. Exactly what form of contact bounce occurs depends on how the switch
is physically made.

– 20 –

Debounced Toggle Switches S5 and S6

Two active-high toggle switches, S5 and S6 on the Expansion Board, are provided for your
experiments. In either case, pushing the switch’s actuator towards the top of the board
(towards the screw terminals) turns the switch on (ie, sets the output High, to VCC). Push-
ing the actuator towards the bottom of the board turns the switch off.

Both S5 and S6 are debounced using standard set-reset flip-flops made from NAND gates.
Please consult the Expansion Board schematic diagram for more details; you can find this
document in the board/schem directory on your CD-ROM.

Debounced Switches S7 and S8

Two debounced push-button switches, S7 and S8, are provided as uncommitted peripherals
on the Expansion Board. These switches are active high: pressing a switch will turn it on
and set the corresponding output to VCC.

Both S7 and S8 are debounced using resistor-capacitor networks passed through Schmitt
trigger inverters; the debounce delay is about 70 ms. Please see the Expansion Board circuit
diagram for more details.

Undebounced Switches S9 and S10

The two push-buttons S9 and S10 on the Expansion Board are active low and not debounced:
pressing one of these switches sets the corresponding output (in the screw terminal connec-
tor) to GND; releasing the switch sets the output to VCC. Neither S9 nor S10 are debounced;
they may well display contact bounce similar to that shown in Figure 10.

LED Bar-graph Display

The bar-graph display D1 on the Expansion Board provides ten LEDs that you can use as
on/off indicators. Connecting a screw terminal input to GND (or leaving that input uncon-
nected) will turn the corresponding LED off; connecting the input to VCC (ie, 3.3V) will turn
that LED on.18 The left-most screw terminal input corresponds to the top-most LED in the
bar-graph display.

Expansion Board Connectors

The Expansion Board should be quite easy to use, as all connectors and peripherals are
clearly marked on the printed circuit board itself. Thus, the following description is for
your reference, for the times that you do not have the physical board in front of you. You
should also consult the circuit diagram for the Expansion Board; this diagram can be found
on your CD-ROM in the board/schem directory.

The screw terminal connectors VS, SA and SB allow you to connect your own circuits
and/or peripherals to the Xilinx Spartan-XL FPGA signals of the same names. Thus, these
connectors are attached to signals VS0–VS15, SA0–SA15 and SB0–SB15 respectively. Each
screw terminal connector has a power connector next to it, allowing you to access GND and
VCC (3.3V).

The LED Array screw terminal connector has already been discussed: this provides access
to the ten LEDs in component D1.

The Switches screw terminal connector provides, from left to right, access to switches S5–
S10 and S4 (1–8).

Two power screw terminal connectors are provided in the top left-hand corner of the
Expansion Board. The upper connector provides access to VCC (3.3V) and GND (0V); your
experiments will almost always use these two voltages. The lower connector provides

18 Although the LED input circuitry is designed to tolerate 5V TTL-level voltages, you should not con-
nect the inputs to anything greater than 3.3V. As a rule of thumb, do not use the 5V or Unreg Power
screw terminals in your circuits!

– 21 –

access to the unregulated input voltage (typically 7–9V) and to 5V for analogue circuits.
Unless specifically asked, you should almost never use these voltages in your own
circuits.19

Please remember that you should always turn the power off when wiring up any of your
own circuits! At the very least, you must connect the ground (GND) wire first and leave the
power (VCC) connection to last. And please do double-check everything before connecting
the power!

Feedback and Credits

This document was written by John Zaitseff from the School of Electrical Engineering,
University of New South Wales, with assistance from Jim Garside at the University of Man-
chester, and Saeid Nooshabadi, also from the School of Electrical Engineering. Please report
any problems or comments that you may have regarding this document to your Laboratory
Demonstrator and/or lecturer.

19 Although the Spartan-XL inputs and the LED Array inputs should tolerate 5V TTL-level voltages, they
will not handle the unregulated voltage. Connecting the Unreg screw terminal output to any pin will
cost you a rather large sum of money…

	The DSLMU Microcontroller Board�Hardware Reference Manual
	Physical Layout
	System Block Diagram
	The Microcontroller
	System Memory
	Field Programmable Gate Arrays
	Connected Peripherals
	Uncommitted Peripherals

	Detailed Schematic Diagrams
	The Boot Select Switch
	Komodo ARM Environment
	Downloading Your Program
	Memory Map
	Read/Write Memory
	Microcontroller I/O Space
	Accessing the Ports
	Port A
	Port B
	Timer Port
	Timer Compare Port
	Serial RxD Port
	Serial TxD Port
	Serial Status Port
	IRQ Status
	IRQ Enable Port
	Debug Stop Port

	Xilinx Spartan-XL FPGA
	External Connections
	Microcontroller Interface
	FPGA Pin Configuration
	Default Configuration

	Accessing the Peripherals
	On-board LEDs
	LCD Module
	Switches S2 and S3
	DIP Switches S4
	Debounced Toggle Switches S5 and S6
	Debounced Switches S7 and S8
	Undebounced Switches S9 and S10
	LED Bar-graph Display

	Expansion Board Connectors
	Feedback and Credits

