
3 September 2002

o sixteen
below.

entries

Ds are

l line.
n there-
ng with
ot op-

address
will
up to
te an

been
resent
Boot Code

On reset the system goes through a short initialisation sequence and then despatches control to one of up t
applications. The application is selected using the DIP switch in the rear, right corner of the PCB, as shown
(This may be read more easily by turning the board around.)

The application entered is governed by a control block in the ROM. This is located at address &004000 with
which are each &100 bytes long. The format of each entry is:

The remaining space (until the next used entry) is available for user descriptions, version numbers etc.
In the event of the selected boot not being valid a message is output to the LCD (if present) and the LE
flashed.
Boot #0 is normally used for the on-board Flash loader which allows the ROM to be configured via a seria
This does not allow the boot code to be overwritten but does allow the boot table to be changed. Boot #0 ca
fore be redefined. In the event of a data table corruption the on-board loader can still be reached by resetti
boot #0 selected whilst holding down the right-hand button on the PCB. (This can also allow seventeen bo
tions, if desperate!)
The user application is entered at the address specified by the start of the ROM (irrelevant here) plus the
within the ROM plus the execution offset. The mode is specified by the CPSR. At this point the RAM image
have been copied into the internal RAM from address &00000000 (the length is in bytes but will be rounded
a whole number of words; a length of zero indicates no RAM image is required). If the FPGA pointers indica
appropriate configuration block the FPGAs will have been initialised. If an LCD module is present it will have
reset, initialised to an eight-bit interface and cleared. If start-up string is required (see flags) and the LCD is p
it will be printed to the LCD module. The initial state of the LCD backlight cab also be set here.

Offset Function Comments

00 “CODE” Magic number

04 Flags See below

08 RAM image start address in ROM “Address” is relative to ROM start

0C RAM image length In bytes but whole words copied

10 ROM image start address “Address” is relative to ROM start

14 ROM image length Used only for mapping/checksum

18 ROM execution offset Offset is from image start

1C ROM execution CPSR Defines execution mode

20 Spartan definition address Points to definition block

24 Spartan definition length Used only for mapping

28 Virtex definition address Points to definition block

2C Virtex definition length Used only for mapping

30 + LCD start-up message Zero terminated string
Understands control characters:

LF (0A) – change lines
FF (0C) – clear screen
CR (0D) – start of line

0

1

0

1

0

1

0

1

0 1 2 3Bit ⇒

3 September 2002

to a ‘safe’

.
ied oth-
w (~8)

e:. In
The memory has been remapped and all the areas are programmed to be useable. The PIO has been set in
configuration. The serial ports are reset, enabled and initialised to 115.2 kbaud1, 8-bits + 1 stop bit, no parity. The
baud rate from serial port #0 is offered to the SCK0 output (port bit 13) but not set as an output by the PIO
The external memory is cleared following a power-up reset but is unaffected by other resets (unless specif
erwise). The internal memory is not changed except that the RAM image is reloaded (as required) and a fe
words at the top of the memory will be corrupted by the start-up process.
The bits within the flag word (0 = don’t, 1 = do) are:

On entry to the user’s application the following registers are meaningful:

In addition the various stack pointers are initialised to point within (or just beyond) the internal RAM spac
the following table the internal RAM length is N (and its start address is always zero).

1. Actually 32 MHz/(16*17) or 117.6 kbaud

Bit Contents

31 - 10 Reserved

9 Zero external RAM

8 Zero internal RAM

7 - 5 Reserved

4 Checksum ROM(Not yet implemented)

3 Reserved

2 LEDs enabled

1 LCD backlight enabled

0 Print LCD start-up message

Register Contents

R0 Pointer to own boot table (true address)

R1 Size of internal RAM

R2 Base address of external RAM (if any)

R3 Length of external RAM

R4 Pointer to Spartan definition block (true address)

R5 Pointer to Virtex definition block (true address)

R6 Boot code version/date 8,8,5,4,7 bits (Maker, version, day, month, year)

R7 Flags: Bit 0 set if LCD module present
Bit 8 set if power up reset
Bit 9 set if watchdog reset

R8 Board serial number (Values 00000000 and FFFFFFFF are invalid codes)

Register Address

SP_svc N

SP_FIQ N - 200

SP_IRQ N - 280

SP_abort N - 300

SP_undef N - 380

SP_user N - 400

3 September 2002

ot pro-
Memory Map
All the external devices reside at addresses programmed into the EBI. The memory map set up by the bo
gramme is given below.

Start Address End Address Chip select Device Actual Size Width Clocks/cycle

00000000 000FFFFF — On chip RAM 8KB 32 1

10000000 003FFFFF — Reserved — — —

00400000 07FFFFFF — — — — —

08000000 0BFFFFFF CS0 Flash ROM 2MB 16 4

0C000000 0FFFFFFF — — — — —

10000000 13FFFFFF CS1 RAM 0-4MB 16 3

14000000 1FFFFFFF — — — — —

20000000 23FFFFFF CS2 Virtex 64 8/16 ???

24000000 2FFFFFFF — — — — —

30000000 300FFFFF CS3 Ethernet ??? 8 6

30100000 3FFFFFFF — — — — —

40000000 400FFFFF CS4 Spartan 32 8 3

40100000 FFBFFFFF — — — — —

FFC00000 FFFFFFFF — On-chip peripherals Assorted 32 1

3 September 2002

terface.

tes

e sec-

le mes-
1”,

r) bytes
uing to
e the

Com

“C”

“E”

“I”

“L”

“P”

“R” om

“W”
Flash Programmer

A protocol is defined so that the on-board Flash ROM can be erased and reprogrammed via the serial in
Two versions of the back-end are available.

On-board flash programming allows the board’s own ROM to be reprogrammed. The lowest 64 Kby
is not writeable to ensure the software cannot commit suicide.

Off-board flash programming uses a Spartan device and a cable to reprogramme another board via th
ond boards expansion bus connector. This allows any part of the Flash ROM to be written to.

Both versions of the code use the same protocols and can use the same front-end software.

Before allowing any changes the front- and back-end software establish bone fides by exchanging a simp
sage. The front end should send the bytes “FE”, “A5”, “1B”, “1E” to which the back-end will respond “FE”, “E
“90”, “0D”.

The following commands are then available:

Any other byte sent at ‘command time’ will simply be echoed back.

Both the read and write byte streams are punctuated every sixteen (or fewer if the remaining length is smalle
by the receiver sending a single byte acknowledgement. The transmitter should wait for this before contin
avoid overruns. An acknowledgement of “A” means “proceed”; anything else (typically “N”) means terminat
command.

Note: a segment should normally be erased before it is written to.

mand Function Parameter(s) Returns

Check lock W: Address B: “N” if segment not locked
B: “L” if segment locked

Erase W: Address B: “A” okay
B: “N” if error occurred

ROM ID None B: Manufacturer code
B: Part code

Lockout W:Address (Not yet implemented) B: “A”

Ping None B: “A”

Read W: Start address
W: Length
(B: Acknowledgements)

B: “Length” bytes post-incrementing fr
“Start address”

Write W: Start address
W: Length
B: “Length” bytes post-incrementing from
“Start address”

(B: Acknowledgements)

3 September 2002

xpects
’s job to

reak-
As.

All ac-

oints.
Komodo/Monitor Communications Protocol

All communication is controlled by the front-end controller which sends commands to the back-end and e
the appropriate response. In the case of a response being detectably wrong or timing out it is the front-end
re-establish/resynchronise the protocol and recover.
Commands sent are single bytes with a variable number of parameters following.
In the following descriptions these definitions apply:
Byte: 8 bits,Halfword: 16 bits,Word: 32 bits,Double word 64 bits,Pointer: 32 bits (ARM).
Commands are divided into sets on the most significant two bits as follows:

General operationsare functions which establish and maintain communications with the target unit, setting b
points et al. They are also used for downloading configuration files to board “features” such as FPG

Memory transfers are used for up- and down-loading the states in the address spaces of the target unit.
cessible state (memories, registers, etc.) is mapped into one of these addressable spaces.

Programme execution is used to start execution and set various options such as single stepping or breakp
Auxiliary functions are reserved for future expansion.

General operations:

Board level communications:

Command Use

00xx xxxx General operations

01xx xxxx Memory transfers

10xx xxxx Programme execution

11xx xxxx Auxiliary functions

Command Meaning

0000 xxxx Board level communications

0001 xxxx Board ‘feature’ communications

0010 xxxx Programme execution control extras

0011 xxxx Breakpoint/watchpoint manipulation

Command Function Parameters Return values

0000 0000 No operation None None

0000 0001 “Ping” – resynchronise None W: “OK??”
?? is the software version - initially “00”

0000 0010 Board definition None H: message length
B: processor type
H: processor subtype
B: feature count
B: feature ID
H: feature sub-ID
B: memory segment count
W: memory segment address
W: memory segment length

0000 0011 Reserved

0000 0100 Reset None None

0000 0101+ Reserved

3 September 2002
Board feature/subfeature definitions

Feature
number

Feature
Subfeature

number
Subfeature

00 Terminal — —

01 - 10 Not defined — —

11 Xilinx Spartan XL 05xx
0Axx
14xx
1Exx
28xx
xx00
xx01
xx02
xx03
xx04
xx05
xx06
xx07
xx08
xx09

XCS05—
XCS10—
XCS20—
XCS30—
XCS40—
—PC84
—VQ100
—CS144
—TQ144
—PQ208
—PQ240

—BG256

—CS280

12 Xilinx Virtex 05xx
0Axx
0Fxx
14xx
1Exx
28xx
3Cxx
50xx
64xx
xx02
xx03
xx04
xx05
xx06
xx07
xx08
xx09
xx0A
xx0B
xx0C
xx0D
xx0E
xx0F

XCV50—
XCV100—
XCV150—
XCV200—
XCV300—
XCV400—
XCV600—
XCV800—
XCV1000—
—CS144
—TQ144

—PQ240
—HQ240
—BG256
—FG256

—BG352
—BG432
—FG456
—BG560
—FG676
—FG680

13 - FF Not defined — —

3 September 2002

itialises
t with a
Board ‘feature’ communications

Device download is instigated by sending a header to the appropriate feature. In the case of an FPGA this in
the device and readies it to receive a new programme. Subsequently a number of ‘packets’ should be sen
total length equal to the specified file length. (Packets beyond this length will be ignored.)

Command Function Parameters Return values

0001 0000 Get Status B: Feature number W: Status
Currently always 0

0001 0001 Set Status B: Feature number
W: Status
Currently ignored

None

0001 0010 Send message
NEW!

B: Feature number
B: Length (0-255)
Specified number of bytes.

B: Number of bytes accepted

0001 0011 Get message
NEW!

B: Feature number
B: Max. length (0-255)

B: Actual length (0-255)
Specified number of bytes.

0001 0100 Download Header B: Feature number
W: Length of file

B: “A” if successful/“N” if feature
unrecognised

0001 0101 Download Packet B: Feature number
B: Packet length (0⇒256)
Specified number of bytes.

B: “A” if successful/“N” if unsuccessful

0001 0110+ Reserved B: Feature number

3 September 2002
Programme execution control extras

Trap manipulation

Command Function Parameters Return values

0010 0000 What is executing? None B: Execution status
W: Number of steps ‘remaining’
W: Number of steps since reset

0010 0001 Stop execution None None

0010 0010 Pause execution None None

0010 0011 Continue execution None None

0010 0100 Set runtime flags B: xxxx xxIF None

0010 0101 Get runtime flags None B: xxxx xxIF

0010 0110+ Reserved

Execution status Meaning

00 Reset

01 Busy - go away!

40 Stopped

41 Stopped due to breakpoint

42 Stopped due to watchpoint

43 Stopped due to memory fault

44 Stopped by programme request

80 Running normally

81 Servicing a SWI

8? Servicing????

C0-FF Error codes

Command Function Parameters Return values

0011 bb00 Define trap B: trap number
B: trap conditions
B: trap sizes
W: trap address A
W: trap address B
D: trap data A
D: trap data B

None

0011 bb01 Read trap definition B: trap number B: trap conditions
B: trap sizes
W: trap address A
W: trap address B
D: trap data A
D: trap data B

0011 bb10 Set trap status W: bitmask1
W: bitmask0

None

0011 bb11 Read trap status None W: bitmask1
W: bitmask0

3 September 2002

ll cases.

mand.

ndefined
The actual class of trap is defined by the two bits “bb”:

The trap conditions are set up as follows:

These allow a flexible range of conditions to be set up. Note that not all conditions may be supported in a

When activating of deactivating traps all the traps (of a given type) can be manipulated with a single com
The trap is defined by the two bits with the appropriate bit numbers.

Thus the parameters 00000005:00000003 would inactivate trap #2, delete trap #1 and activate trap #0; an u
trap will not be activated.

bb Meaning

00 Breakpoint (instruction fetch)

01 Watchpoint (data transfer)

10 Register value

11 Reserved

Trap condition Meaning

Uxxx xxxx 0: do not trap if in user mode
1: may trap if in user mode

xPxx xxxx 0: do not trap if in privileged mode
1: may trap if in privileged mode

xxRW xxxx 00: do not trap
01: trap only on write accesses
10: trap only on read accesses
11: may trap on any transfer

xxxx AAxx 0x: reserved
10: may trap if addrA <= addr <= addrB
11: may trap if addr AND addrB = addrA

xxxx xxDD 0x: reserved
10: may trap if dataA <= data <= dataB
11: may trap if data AND dataB = dataA

Transfer size mask Meaning

xxxx Sxxx Trap on 64-bit accesses

xxxx xSxx Trap on 32-bit accesses

xxxx xxSx Trap on 16-bit accesses

xxxx xxxS Trap on 8-bit accesses

bitmask1:bitmask0 Meaning when written Meaning when read

0:0 No operation Not implemented

0:1 Delete definition Implemented but not defined

1:0 Inactivate Inactive

1:1 Activate Active

3 September 2002

irection.

ere each

f steps
Memory transfers
Memory transfers are specified by the command word as follows:
01 mm d sss
mm indicates the address space used:

d indicates the direction:

sss indicates the transfer element size:

All memory transaction commands are followed by two parameters:
Address: word
Number of elements: halfword

These are then followed by the designated number of elements of the designated size in the appropriate d
The address will be incremented to the next element remotely.
All transfers are little endian, so that a serial line will assume least significant byte first.

Programme execution
Run is a single byte command used to start execution on the remote processor. It is encoded as follows, wh
bit 0/1 means disabled/enabled respectively:
10 w b m s p x
w enables halting when an active watchpoint is encountered
b enables halting when an active breakpoint is encountered
m enables halting when a memory abort occurs
s enables the treatment of a SWI as a single instruction (when single stepping)
p enables the treatment of a BL (procedure) as a single instruction (when single stepping)
x enables breakpoints on the first instruction executed (to allow ‘walk’ to break successfully)
Run commands are always followed by a single, word parameter which indicates the maximum number o
to execute; 00000000 is a special case which indicates unlimited steps.

Auxiliary functions
None of these is yet defined.

mm Meaning

00 Memory address space

01 Registers

1x Reserved

d Meaning

0 Write (0utput from user)

1 Read (1nput to user)

sss Meaning

000 8 bit

001 16 bit

010 32 bit

011 64 bit

1xx Reserved

3 September 2002
ARM Software Emulator

The virtual machine is currently an ARM7 (no Thumb extension yet). All the external RAM (typically 512 Kbytes)
is available to the user and begins at address 00000000.

The following I/O regions are available:

The internal I/O region map is:

Start address End address Size (bytes) Width Use

10000000 1FFFFFFF 32 8 Internal I/O

20000000 2FFFFFFF 32 8 Spartan FPGA

30000000 3FFFFFFF 64 16 (?) Virtex FPGA

Offset Direction Register Remarks

00 R/W PIO_A Bidirectional data for LCD, LEDs etc.

04 R/W PIO_B Sundry bits plus PIO_A direction control

08 R/W Timer 8-bit free running, incrementing at 1 kHz

0C R/W Timer compare Interrupt asserted when timer equals this register

10 RO Serial RxD Each read removes one byte from the input stream

10 WO Serial TxD Each write puts one byte into the output stream

14 R/W Serial status Bit 1 = Tx ready; Bit 0 = Rx ready

18 R/W Interrupt requests Raw interrupt requests, active high

1C R/W Interrupt enables Active high

20 WO Stop execution Writing any value causes execution to stop

20 RO Serial Number Byte #0 (LSB)

24 RO Serial Number Byte #1

28 RO Serial Number Byte #2

2C RO Serial Number Byte #3 (MSB)

30-3C – Reserved

3 September 2002
The bit maps for the I/O ports are as follows:

PIO_B:

Interrupt Request/Enable:

The interrupt request bits are set or cleared by external events, but may also be written to by software.

Bit Use

7 Button (left) 1 = pressed Read only

6 Button (right) 1 = pressed Read only

5 LCD backlight 1 = on

4 LED enable 1 = on

3 Not used

2 LCD R/W 1 = read also PIO_A direction

1 LCD RS 1 = data register

0 LCD E 1 = active

Bit Use

7 Button (left)

6 Button (right)

5 Serial transmitter ready

4 Serial receiver ready

3 Ethernet IRQ

2 Virtex IRQ

1 Spartan IRQ

0 Timer compare

	On-board Software
	Boot Code
	Memory Map

	Flash Programmer
	Komodo/Monitor Communications Protocol
	General operations:
	Board level communications:
	Board ‘feature’ communications
	Programme execution control extras
	Trap manipulation

	Memory transfers
	Programme execution
	Auxiliary functions

	ARM Software Emulator
	PIO_B:
	Interrupt Request/Enable:

